Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction
Topological defects in magnetism have attracted great attention due to fundamental research interests and potential novel spintronics applications. Rich examples of topological defects can be found in nanoscale nonuniform spin textures, such as monopoles, domain walls, vortices, and skyrmions. Recen...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-10, Vol.96 (14), Article 144412 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Physical review. B |
container_volume | 96 |
creator | Huang, Siying Zhou, Chao Chen, Gong Shen, Hongyi Schmid, Andreas K. Liu, Kai Wu, Yizheng |
description | Topological defects in magnetism have attracted great attention due to fundamental research interests and potential novel spintronics applications. Rich examples of topological defects can be found in nanoscale nonuniform spin textures, such as monopoles, domain walls, vortices, and skyrmions. Recently, skyrmions stabilized by the Dzyaloshinskii-Moriya interaction have been studied extensively. However, the stabilization of antiskyrmions is less straightforward. Here, using numerical simulations we demonstrate that antiskyrmions can be a stable spin configuration in the presence of anisotropic Dzyaloshinskii-Moriya interaction. We find current-driven antiskyrmion motion that has a transverse component, namely, the antiskyrmion Hall effect. The antiskyrmion gyroconstant is opposite to that for skyrmion, which allows the current-driven propagation of coupled skyrmion-antiskyrmion pairs without an apparent skyrmion Hall effect. The antiskyrmion Hall angle strongly depends on the current direction, and a zero antiskyrmion Hall angle can be achieved at a critic current direction. These results open up possibilities to tailor the spin topology in nanoscale magnetism, which may be useful in the emerging field of skyrmionics. |
doi_str_mv | 10.1103/PhysRevB.96.144412 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1398743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123176253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3762-9405abf224f80b778dc306d0fd7cb28ed7d3716063981daed15d15ef76efd2ca3</originalsourceid><addsrcrecordid>eNo9UdtKxDAQLaLgovsDPhV97ppLN9k86nqFFcXLc0iTKc1ekjVJhe7X27UqDMwM58zhDCfLzjCaYIzo5UvTxVf4up4INsFlWWJykI1IyUQhBBOH__MUHWfjGJcIIcyQ4EiMsu4tqcqu7U4l612unMl1GwK4VFhnWg0m3_gfyNc9mmxcdWGz363LUwP5NkAEp2HAbfQp-K3V-c2uU2sfG-viytriyQfbqf4oQVB6L3iaHdVqHWH820-yj7vb9_lDsXi-f5xfLQpNOSOFKNFUVTUhZT1DFeczoyliBtWG64rMwHBDef8Oo2KGjQKDp31BzRnUhmhFT7LzQdfHZGXUNoFutHcOdJK4v-Il7UkXA2kb_GcLMcmlb4PrfUmCCcW9k-meRQaWDj7GALXcBrtRoZMYyX0U8i8KKZgcoqDf9iOA-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123176253</pqid></control><display><type>article</type><title>Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction</title><source>American Physical Society Journals</source><creator>Huang, Siying ; Zhou, Chao ; Chen, Gong ; Shen, Hongyi ; Schmid, Andreas K. ; Liu, Kai ; Wu, Yizheng</creator><creatorcontrib>Huang, Siying ; Zhou, Chao ; Chen, Gong ; Shen, Hongyi ; Schmid, Andreas K. ; Liu, Kai ; Wu, Yizheng</creatorcontrib><description>Topological defects in magnetism have attracted great attention due to fundamental research interests and potential novel spintronics applications. Rich examples of topological defects can be found in nanoscale nonuniform spin textures, such as monopoles, domain walls, vortices, and skyrmions. Recently, skyrmions stabilized by the Dzyaloshinskii-Moriya interaction have been studied extensively. However, the stabilization of antiskyrmions is less straightforward. Here, using numerical simulations we demonstrate that antiskyrmions can be a stable spin configuration in the presence of anisotropic Dzyaloshinskii-Moriya interaction. We find current-driven antiskyrmion motion that has a transverse component, namely, the antiskyrmion Hall effect. The antiskyrmion gyroconstant is opposite to that for skyrmion, which allows the current-driven propagation of coupled skyrmion-antiskyrmion pairs without an apparent skyrmion Hall effect. The antiskyrmion Hall angle strongly depends on the current direction, and a zero antiskyrmion Hall angle can be achieved at a critic current direction. These results open up possibilities to tailor the spin topology in nanoscale magnetism, which may be useful in the emerging field of skyrmionics.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.96.144412</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Computer simulation ; Defects ; Domain walls ; Electromagnetism ; Hall effect ; Hypothetical particles ; Magnetism ; Particle theory ; Spintronics ; Stabilization ; Topology</subject><ispartof>Physical review. B, 2017-10, Vol.96 (14), Article 144412</ispartof><rights>Copyright American Physical Society Oct 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3762-9405abf224f80b778dc306d0fd7cb28ed7d3716063981daed15d15ef76efd2ca3</citedby><cites>FETCH-LOGICAL-c3762-9405abf224f80b778dc306d0fd7cb28ed7d3716063981daed15d15ef76efd2ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1398743$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Siying</creatorcontrib><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Shen, Hongyi</creatorcontrib><creatorcontrib>Schmid, Andreas K.</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Wu, Yizheng</creatorcontrib><title>Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction</title><title>Physical review. B</title><description>Topological defects in magnetism have attracted great attention due to fundamental research interests and potential novel spintronics applications. Rich examples of topological defects can be found in nanoscale nonuniform spin textures, such as monopoles, domain walls, vortices, and skyrmions. Recently, skyrmions stabilized by the Dzyaloshinskii-Moriya interaction have been studied extensively. However, the stabilization of antiskyrmions is less straightforward. Here, using numerical simulations we demonstrate that antiskyrmions can be a stable spin configuration in the presence of anisotropic Dzyaloshinskii-Moriya interaction. We find current-driven antiskyrmion motion that has a transverse component, namely, the antiskyrmion Hall effect. The antiskyrmion gyroconstant is opposite to that for skyrmion, which allows the current-driven propagation of coupled skyrmion-antiskyrmion pairs without an apparent skyrmion Hall effect. The antiskyrmion Hall angle strongly depends on the current direction, and a zero antiskyrmion Hall angle can be achieved at a critic current direction. These results open up possibilities to tailor the spin topology in nanoscale magnetism, which may be useful in the emerging field of skyrmionics.</description><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Defects</subject><subject>Domain walls</subject><subject>Electromagnetism</subject><subject>Hall effect</subject><subject>Hypothetical particles</subject><subject>Magnetism</subject><subject>Particle theory</subject><subject>Spintronics</subject><subject>Stabilization</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9UdtKxDAQLaLgovsDPhV97ppLN9k86nqFFcXLc0iTKc1ekjVJhe7X27UqDMwM58zhDCfLzjCaYIzo5UvTxVf4up4INsFlWWJykI1IyUQhBBOH__MUHWfjGJcIIcyQ4EiMsu4tqcqu7U4l612unMl1GwK4VFhnWg0m3_gfyNc9mmxcdWGz363LUwP5NkAEp2HAbfQp-K3V-c2uU2sfG-viytriyQfbqf4oQVB6L3iaHdVqHWH820-yj7vb9_lDsXi-f5xfLQpNOSOFKNFUVTUhZT1DFeczoyliBtWG64rMwHBDef8Oo2KGjQKDp31BzRnUhmhFT7LzQdfHZGXUNoFutHcOdJK4v-Il7UkXA2kb_GcLMcmlb4PrfUmCCcW9k-meRQaWDj7GALXcBrtRoZMYyX0U8i8KKZgcoqDf9iOA-g</recordid><startdate>20171009</startdate><enddate>20171009</enddate><creator>Huang, Siying</creator><creator>Zhou, Chao</creator><creator>Chen, Gong</creator><creator>Shen, Hongyi</creator><creator>Schmid, Andreas K.</creator><creator>Liu, Kai</creator><creator>Wu, Yizheng</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20171009</creationdate><title>Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction</title><author>Huang, Siying ; Zhou, Chao ; Chen, Gong ; Shen, Hongyi ; Schmid, Andreas K. ; Liu, Kai ; Wu, Yizheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3762-9405abf224f80b778dc306d0fd7cb28ed7d3716063981daed15d15ef76efd2ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Defects</topic><topic>Domain walls</topic><topic>Electromagnetism</topic><topic>Hall effect</topic><topic>Hypothetical particles</topic><topic>Magnetism</topic><topic>Particle theory</topic><topic>Spintronics</topic><topic>Stabilization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Siying</creatorcontrib><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Chen, Gong</creatorcontrib><creatorcontrib>Shen, Hongyi</creatorcontrib><creatorcontrib>Schmid, Andreas K.</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Wu, Yizheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Siying</au><au>Zhou, Chao</au><au>Chen, Gong</au><au>Shen, Hongyi</au><au>Schmid, Andreas K.</au><au>Liu, Kai</au><au>Wu, Yizheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction</atitle><jtitle>Physical review. B</jtitle><date>2017-10-09</date><risdate>2017</risdate><volume>96</volume><issue>14</issue><artnum>144412</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Topological defects in magnetism have attracted great attention due to fundamental research interests and potential novel spintronics applications. Rich examples of topological defects can be found in nanoscale nonuniform spin textures, such as monopoles, domain walls, vortices, and skyrmions. Recently, skyrmions stabilized by the Dzyaloshinskii-Moriya interaction have been studied extensively. However, the stabilization of antiskyrmions is less straightforward. Here, using numerical simulations we demonstrate that antiskyrmions can be a stable spin configuration in the presence of anisotropic Dzyaloshinskii-Moriya interaction. We find current-driven antiskyrmion motion that has a transverse component, namely, the antiskyrmion Hall effect. The antiskyrmion gyroconstant is opposite to that for skyrmion, which allows the current-driven propagation of coupled skyrmion-antiskyrmion pairs without an apparent skyrmion Hall effect. The antiskyrmion Hall angle strongly depends on the current direction, and a zero antiskyrmion Hall angle can be achieved at a critic current direction. These results open up possibilities to tailor the spin topology in nanoscale magnetism, which may be useful in the emerging field of skyrmionics.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.96.144412</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2017-10, Vol.96 (14), Article 144412 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1398743 |
source | American Physical Society Journals |
subjects | Anisotropy Computer simulation Defects Domain walls Electromagnetism Hall effect Hypothetical particles Magnetism Particle theory Spintronics Stabilization Topology |
title | Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii-Moriya interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20and%20current-induced%20motion%20of%20antiskyrmion%20in%20the%20presence%20of%20anisotropic%20Dzyaloshinskii-Moriya%20interaction&rft.jtitle=Physical%20review.%20B&rft.au=Huang,%20Siying&rft.date=2017-10-09&rft.volume=96&rft.issue=14&rft.artnum=144412&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.96.144412&rft_dat=%3Cproquest_osti_%3E2123176253%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123176253&rft_id=info:pmid/&rfr_iscdi=true |