Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust
We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhau...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Combustion Institute 2017, Vol.36 (3), p.4565-4573 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4573 |
---|---|
container_issue | 3 |
container_start_page | 4565 |
container_title | Proceedings of the Combustion Institute |
container_volume | 36 |
creator | Schroeder, P.J. Wright, R.J. Coburn, S. Sodergren, B. Cossel, K.C. Droste, S. Truong, G.W. Baumann, E. Giorgetta, F.R. Coddington, I. Newbury, N.R. Rieker, G.B. |
description | We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments. |
doi_str_mv | 10.1016/j.proci.2016.06.032 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1398690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748916300906</els_id><sourcerecordid>S1540748916300906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wE1wPzWZTJPMwoXUJ1R0obgMd_KwKe1kTGbE_nsz1rVw4d4L5xwOH0LnlMwoofxyPeti0H5W5mdG8rDyAE2oFKwoBakO8z2vSCEqWR-jk5TWhDBB2HyCXm4G2GAX7edgW73DOmwbvIFkI4Ymhdj1PrQ4dVb3MSQduh32LQZMOX56xx-QcD_ExrcW2-8VDKk_RUcONsme_e0peru7fV08FMvn-8fF9bLQFeV9QUECr11jjODGuYZDaVzdMGe4rgQwMFBLCUQAL420lLtaN5XhwrA5l6JkU3Sxzw2p9ypp31u90qFtc1NFWS15TbKI7UU6l0_ROtVFv4W4U5SokZxaq19yaiSnSB42Rl_tXTb3__I2jvGZjjU-jukm-H_9P6rueT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schroeder, P.J. ; Wright, R.J. ; Coburn, S. ; Sodergren, B. ; Cossel, K.C. ; Droste, S. ; Truong, G.W. ; Baumann, E. ; Giorgetta, F.R. ; Coddington, I. ; Newbury, N.R. ; Rieker, G.B.</creator><creatorcontrib>Schroeder, P.J. ; Wright, R.J. ; Coburn, S. ; Sodergren, B. ; Cossel, K.C. ; Droste, S. ; Truong, G.W. ; Baumann, E. ; Giorgetta, F.R. ; Coddington, I. ; Newbury, N.R. ; Rieker, G.B.</creatorcontrib><description>We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2016.06.032</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Absorption spectroscopy ; Combustion ; Frequency comb ; Gas turbine ; Sensor</subject><ispartof>Proceedings of the Combustion Institute, 2017, Vol.36 (3), p.4565-4573</ispartof><rights>2016 The Combustion Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</citedby><cites>FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</cites><orcidid>0000-0003-4154-1084 ; 0000-0003-1591-9477 ; 0000000341541084 ; 0000000315919477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.proci.2016.06.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1398690$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, P.J.</creatorcontrib><creatorcontrib>Wright, R.J.</creatorcontrib><creatorcontrib>Coburn, S.</creatorcontrib><creatorcontrib>Sodergren, B.</creatorcontrib><creatorcontrib>Cossel, K.C.</creatorcontrib><creatorcontrib>Droste, S.</creatorcontrib><creatorcontrib>Truong, G.W.</creatorcontrib><creatorcontrib>Baumann, E.</creatorcontrib><creatorcontrib>Giorgetta, F.R.</creatorcontrib><creatorcontrib>Coddington, I.</creatorcontrib><creatorcontrib>Newbury, N.R.</creatorcontrib><creatorcontrib>Rieker, G.B.</creatorcontrib><title>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</title><title>Proceedings of the Combustion Institute</title><description>We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments.</description><subject>Absorption spectroscopy</subject><subject>Combustion</subject><subject>Frequency comb</subject><subject>Gas turbine</subject><subject>Sensor</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wE1wPzWZTJPMwoXUJ1R0obgMd_KwKe1kTGbE_nsz1rVw4d4L5xwOH0LnlMwoofxyPeti0H5W5mdG8rDyAE2oFKwoBakO8z2vSCEqWR-jk5TWhDBB2HyCXm4G2GAX7edgW73DOmwbvIFkI4Ymhdj1PrQ4dVb3MSQduh32LQZMOX56xx-QcD_ExrcW2-8VDKk_RUcONsme_e0peru7fV08FMvn-8fF9bLQFeV9QUECr11jjODGuYZDaVzdMGe4rgQwMFBLCUQAL420lLtaN5XhwrA5l6JkU3Sxzw2p9ypp31u90qFtc1NFWS15TbKI7UU6l0_ROtVFv4W4U5SokZxaq19yaiSnSB42Rl_tXTb3__I2jvGZjjU-jukm-H_9P6rueT0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Schroeder, P.J.</creator><creator>Wright, R.J.</creator><creator>Coburn, S.</creator><creator>Sodergren, B.</creator><creator>Cossel, K.C.</creator><creator>Droste, S.</creator><creator>Truong, G.W.</creator><creator>Baumann, E.</creator><creator>Giorgetta, F.R.</creator><creator>Coddington, I.</creator><creator>Newbury, N.R.</creator><creator>Rieker, G.B.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4154-1084</orcidid><orcidid>https://orcid.org/0000-0003-1591-9477</orcidid><orcidid>https://orcid.org/0000000341541084</orcidid><orcidid>https://orcid.org/0000000315919477</orcidid></search><sort><creationdate>2017</creationdate><title>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</title><author>Schroeder, P.J. ; Wright, R.J. ; Coburn, S. ; Sodergren, B. ; Cossel, K.C. ; Droste, S. ; Truong, G.W. ; Baumann, E. ; Giorgetta, F.R. ; Coddington, I. ; Newbury, N.R. ; Rieker, G.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption spectroscopy</topic><topic>Combustion</topic><topic>Frequency comb</topic><topic>Gas turbine</topic><topic>Sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, P.J.</creatorcontrib><creatorcontrib>Wright, R.J.</creatorcontrib><creatorcontrib>Coburn, S.</creatorcontrib><creatorcontrib>Sodergren, B.</creatorcontrib><creatorcontrib>Cossel, K.C.</creatorcontrib><creatorcontrib>Droste, S.</creatorcontrib><creatorcontrib>Truong, G.W.</creatorcontrib><creatorcontrib>Baumann, E.</creatorcontrib><creatorcontrib>Giorgetta, F.R.</creatorcontrib><creatorcontrib>Coddington, I.</creatorcontrib><creatorcontrib>Newbury, N.R.</creatorcontrib><creatorcontrib>Rieker, G.B.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, P.J.</au><au>Wright, R.J.</au><au>Coburn, S.</au><au>Sodergren, B.</au><au>Cossel, K.C.</au><au>Droste, S.</au><au>Truong, G.W.</au><au>Baumann, E.</au><au>Giorgetta, F.R.</au><au>Coddington, I.</au><au>Newbury, N.R.</au><au>Rieker, G.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2017</date><risdate>2017</risdate><volume>36</volume><issue>3</issue><spage>4565</spage><epage>4573</epage><pages>4565-4573</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2016.06.032</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4154-1084</orcidid><orcidid>https://orcid.org/0000-0003-1591-9477</orcidid><orcidid>https://orcid.org/0000000341541084</orcidid><orcidid>https://orcid.org/0000000315919477</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-7489 |
ispartof | Proceedings of the Combustion Institute, 2017, Vol.36 (3), p.4565-4573 |
issn | 1540-7489 1873-2704 |
language | eng |
recordid | cdi_osti_scitechconnect_1398690 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Absorption spectroscopy Combustion Frequency comb Gas turbine Sensor |
title | Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20frequency%20comb%20laser%20absorption%20spectroscopy%20in%20a%2016%20MW%20gas%20turbine%20exhaust&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Schroeder,%20P.J.&rft.date=2017&rft.volume=36&rft.issue=3&rft.spage=4565&rft.epage=4573&rft.pages=4565-4573&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2016.06.032&rft_dat=%3Celsevier_osti_%3ES1540748916300906%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1540748916300906&rfr_iscdi=true |