Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust

We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2017, Vol.36 (3), p.4565-4573
Hauptverfasser: Schroeder, P.J., Wright, R.J., Coburn, S., Sodergren, B., Cossel, K.C., Droste, S., Truong, G.W., Baumann, E., Giorgetta, F.R., Coddington, I., Newbury, N.R., Rieker, G.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4573
container_issue 3
container_start_page 4565
container_title Proceedings of the Combustion Institute
container_volume 36
creator Schroeder, P.J.
Wright, R.J.
Coburn, S.
Sodergren, B.
Cossel, K.C.
Droste, S.
Truong, G.W.
Baumann, E.
Giorgetta, F.R.
Coddington, I.
Newbury, N.R.
Rieker, G.B.
description We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments.
doi_str_mv 10.1016/j.proci.2016.06.032
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1398690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748916300906</els_id><sourcerecordid>S1540748916300906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wE1wPzWZTJPMwoXUJ1R0obgMd_KwKe1kTGbE_nsz1rVw4d4L5xwOH0LnlMwoofxyPeti0H5W5mdG8rDyAE2oFKwoBakO8z2vSCEqWR-jk5TWhDBB2HyCXm4G2GAX7edgW73DOmwbvIFkI4Ymhdj1PrQ4dVb3MSQduh32LQZMOX56xx-QcD_ExrcW2-8VDKk_RUcONsme_e0peru7fV08FMvn-8fF9bLQFeV9QUECr11jjODGuYZDaVzdMGe4rgQwMFBLCUQAL420lLtaN5XhwrA5l6JkU3Sxzw2p9ypp31u90qFtc1NFWS15TbKI7UU6l0_ROtVFv4W4U5SokZxaq19yaiSnSB42Rl_tXTb3__I2jvGZjjU-jukm-H_9P6rueT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schroeder, P.J. ; Wright, R.J. ; Coburn, S. ; Sodergren, B. ; Cossel, K.C. ; Droste, S. ; Truong, G.W. ; Baumann, E. ; Giorgetta, F.R. ; Coddington, I. ; Newbury, N.R. ; Rieker, G.B.</creator><creatorcontrib>Schroeder, P.J. ; Wright, R.J. ; Coburn, S. ; Sodergren, B. ; Cossel, K.C. ; Droste, S. ; Truong, G.W. ; Baumann, E. ; Giorgetta, F.R. ; Coddington, I. ; Newbury, N.R. ; Rieker, G.B.</creatorcontrib><description>We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2016.06.032</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Absorption spectroscopy ; Combustion ; Frequency comb ; Gas turbine ; Sensor</subject><ispartof>Proceedings of the Combustion Institute, 2017, Vol.36 (3), p.4565-4573</ispartof><rights>2016 The Combustion Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</citedby><cites>FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</cites><orcidid>0000-0003-4154-1084 ; 0000-0003-1591-9477 ; 0000000341541084 ; 0000000315919477</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.proci.2016.06.032$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1398690$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, P.J.</creatorcontrib><creatorcontrib>Wright, R.J.</creatorcontrib><creatorcontrib>Coburn, S.</creatorcontrib><creatorcontrib>Sodergren, B.</creatorcontrib><creatorcontrib>Cossel, K.C.</creatorcontrib><creatorcontrib>Droste, S.</creatorcontrib><creatorcontrib>Truong, G.W.</creatorcontrib><creatorcontrib>Baumann, E.</creatorcontrib><creatorcontrib>Giorgetta, F.R.</creatorcontrib><creatorcontrib>Coddington, I.</creatorcontrib><creatorcontrib>Newbury, N.R.</creatorcontrib><creatorcontrib>Rieker, G.B.</creatorcontrib><title>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</title><title>Proceedings of the Combustion Institute</title><description>We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments.</description><subject>Absorption spectroscopy</subject><subject>Combustion</subject><subject>Frequency comb</subject><subject>Gas turbine</subject><subject>Sensor</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wE1wPzWZTJPMwoXUJ1R0obgMd_KwKe1kTGbE_nsz1rVw4d4L5xwOH0LnlMwoofxyPeti0H5W5mdG8rDyAE2oFKwoBakO8z2vSCEqWR-jk5TWhDBB2HyCXm4G2GAX7edgW73DOmwbvIFkI4Ymhdj1PrQ4dVb3MSQduh32LQZMOX56xx-QcD_ExrcW2-8VDKk_RUcONsme_e0peru7fV08FMvn-8fF9bLQFeV9QUECr11jjODGuYZDaVzdMGe4rgQwMFBLCUQAL420lLtaN5XhwrA5l6JkU3Sxzw2p9ypp31u90qFtc1NFWS15TbKI7UU6l0_ROtVFv4W4U5SokZxaq19yaiSnSB42Rl_tXTb3__I2jvGZjjU-jukm-H_9P6rueT0</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Schroeder, P.J.</creator><creator>Wright, R.J.</creator><creator>Coburn, S.</creator><creator>Sodergren, B.</creator><creator>Cossel, K.C.</creator><creator>Droste, S.</creator><creator>Truong, G.W.</creator><creator>Baumann, E.</creator><creator>Giorgetta, F.R.</creator><creator>Coddington, I.</creator><creator>Newbury, N.R.</creator><creator>Rieker, G.B.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4154-1084</orcidid><orcidid>https://orcid.org/0000-0003-1591-9477</orcidid><orcidid>https://orcid.org/0000000341541084</orcidid><orcidid>https://orcid.org/0000000315919477</orcidid></search><sort><creationdate>2017</creationdate><title>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</title><author>Schroeder, P.J. ; Wright, R.J. ; Coburn, S. ; Sodergren, B. ; Cossel, K.C. ; Droste, S. ; Truong, G.W. ; Baumann, E. ; Giorgetta, F.R. ; Coddington, I. ; Newbury, N.R. ; Rieker, G.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-1a8a69fbdd76dffb6a2df9b3fd6c47a3ada988a07a62d8e16f9cb4d67d3568723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption spectroscopy</topic><topic>Combustion</topic><topic>Frequency comb</topic><topic>Gas turbine</topic><topic>Sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, P.J.</creatorcontrib><creatorcontrib>Wright, R.J.</creatorcontrib><creatorcontrib>Coburn, S.</creatorcontrib><creatorcontrib>Sodergren, B.</creatorcontrib><creatorcontrib>Cossel, K.C.</creatorcontrib><creatorcontrib>Droste, S.</creatorcontrib><creatorcontrib>Truong, G.W.</creatorcontrib><creatorcontrib>Baumann, E.</creatorcontrib><creatorcontrib>Giorgetta, F.R.</creatorcontrib><creatorcontrib>Coddington, I.</creatorcontrib><creatorcontrib>Newbury, N.R.</creatorcontrib><creatorcontrib>Rieker, G.B.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, P.J.</au><au>Wright, R.J.</au><au>Coburn, S.</au><au>Sodergren, B.</au><au>Cossel, K.C.</au><au>Droste, S.</au><au>Truong, G.W.</au><au>Baumann, E.</au><au>Giorgetta, F.R.</au><au>Coddington, I.</au><au>Newbury, N.R.</au><au>Rieker, G.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2017</date><risdate>2017</risdate><volume>36</volume><issue>3</issue><spage>4565</spage><epage>4573</epage><pages>4565-4573</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>We demonstrate the first frequency comb laser absorption spectroscopy in an industrial environment. Recent advancements in robust frequency comb design enabled installation of the sensor in an operating power plant, where we simultaneously measured temperature, H2O and CO2 concentration in the exhaust of a 16 MW stationary gas turbine. The frequency comb laser spectrometer probed 16,000 individual wavelengths of light spaced by 0.007 cm−1 (0.0014 nm) near 1440 nm, spanning 279 absorption features of H2O and 43 features of CO2. Fits to the measured absorption spectra yield simultaneous temperature, H2O and CO2 concentrations with between 10 and 60 second time resolution. Measurements over a 5 hour period tracked variations in the exhaust consistent with various changes to the gas turbine operation. Much larger wavelength ranges (200+ nm) and different time resolutions are possible depending on the desired precision by changing various settings on the same spectrometer. Overall, this work demonstrates the potential for frequency comb laser absorption spectroscopy in industrial combustion environments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2016.06.032</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4154-1084</orcidid><orcidid>https://orcid.org/0000-0003-1591-9477</orcidid><orcidid>https://orcid.org/0000000341541084</orcidid><orcidid>https://orcid.org/0000000315919477</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2017, Vol.36 (3), p.4565-4573
issn 1540-7489
1873-2704
language eng
recordid cdi_osti_scitechconnect_1398690
source Elsevier ScienceDirect Journals Complete
subjects Absorption spectroscopy
Combustion
Frequency comb
Gas turbine
Sensor
title Dual frequency comb laser absorption spectroscopy in a 16 MW gas turbine exhaust
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20frequency%20comb%20laser%20absorption%20spectroscopy%20in%20a%2016%20MW%20gas%20turbine%20exhaust&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Schroeder,%20P.J.&rft.date=2017&rft.volume=36&rft.issue=3&rft.spage=4565&rft.epage=4573&rft.pages=4565-4573&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2016.06.032&rft_dat=%3Celsevier_osti_%3ES1540748916300906%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1540748916300906&rfr_iscdi=true