Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures
Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state nev...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2017-04, Vol.128 (C), p.345-350 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | C |
container_start_page | 345 |
container_title | Acta materialia |
container_volume | 128 |
creator | Zhao, Quan Jiang, Wei Srolovitz, David J. Bao, Weizhu |
description | Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2017.02.010 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1397793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645417301015</els_id><sourcerecordid>S1359645417301015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwCEgW9wTbceL6hFDFn1SJSzlbjrNJHVK7sh2kvj0O7Z3T7mFmdufLsnuCC4JJ_TgUSke1V7GgmPAC0wITfJEtyIqXOWVVeZn2shJ5zSp2nd2EMGBMKGd4kX1vvTmMgIbJ6micRa1XPYKuAx0DaidvbI-iO7jR9UarEemdsj0EZCyKO0Dw48bpz-g6lFRH7Y8hqnE0FtDeaO9C9JOOk4dwm111agxwd57L7Ov1Zbt-zzefbx_r502uGRMxb1tKMS2JEKSuO846TVaCcEFoQ4HyFdakpbjhrBZMVVg1jaoU1EThqumYYuUyezjlpttGBm0i6J121qZOkpSCc1EmUXUSzS8GD508eLNX_igJljNWOcgzVjljlZjKhDX5nk4-SA1-DPj5AFgNrfFzfuvMPwm_K7-Fvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Quan ; Jiang, Wei ; Srolovitz, David J. ; Bao, Weizhu</creator><creatorcontrib>Zhao, Quan ; Jiang, Wei ; Srolovitz, David J. ; Bao, Weizhu</creatorcontrib><description>Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2017.02.010</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Drag effect ; Grain boundary ; T1 process ; T3 process ; Triple junction angle ; Triple junction motion</subject><ispartof>Acta materialia, 2017-04, Vol.128 (C), p.345-350</ispartof><rights>2017 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</citedby><cites>FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</cites><orcidid>0000-0002-1601-236X ; 0000-0001-6038-020X ; 000000021601236X ; 000000016038020X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2017.02.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1397793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Quan</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><creatorcontrib>Bao, Weizhu</creatorcontrib><title>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</title><title>Acta materialia</title><description>Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively.
[Display omitted]</description><subject>Drag effect</subject><subject>Grain boundary</subject><subject>T1 process</subject><subject>T3 process</subject><subject>Triple junction angle</subject><subject>Triple junction motion</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwCEgW9wTbceL6hFDFn1SJSzlbjrNJHVK7sh2kvj0O7Z3T7mFmdufLsnuCC4JJ_TgUSke1V7GgmPAC0wITfJEtyIqXOWVVeZn2shJ5zSp2nd2EMGBMKGd4kX1vvTmMgIbJ6micRa1XPYKuAx0DaidvbI-iO7jR9UarEemdsj0EZCyKO0Dw48bpz-g6lFRH7Y8hqnE0FtDeaO9C9JOOk4dwm111agxwd57L7Ov1Zbt-zzefbx_r502uGRMxb1tKMS2JEKSuO846TVaCcEFoQ4HyFdakpbjhrBZMVVg1jaoU1EThqumYYuUyezjlpttGBm0i6J121qZOkpSCc1EmUXUSzS8GD508eLNX_igJljNWOcgzVjljlZjKhDX5nk4-SA1-DPj5AFgNrfFzfuvMPwm_K7-Fvw</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Zhao, Quan</creator><creator>Jiang, Wei</creator><creator>Srolovitz, David J.</creator><creator>Bao, Weizhu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1601-236X</orcidid><orcidid>https://orcid.org/0000-0001-6038-020X</orcidid><orcidid>https://orcid.org/000000021601236X</orcidid><orcidid>https://orcid.org/000000016038020X</orcidid></search><sort><creationdate>20170415</creationdate><title>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</title><author>Zhao, Quan ; Jiang, Wei ; Srolovitz, David J. ; Bao, Weizhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Drag effect</topic><topic>Grain boundary</topic><topic>T1 process</topic><topic>T3 process</topic><topic>Triple junction angle</topic><topic>Triple junction motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Quan</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><creatorcontrib>Bao, Weizhu</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Quan</au><au>Jiang, Wei</au><au>Srolovitz, David J.</au><au>Bao, Weizhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</atitle><jtitle>Acta materialia</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>128</volume><issue>C</issue><spage>345</spage><epage>350</epage><pages>345-350</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2017.02.010</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1601-236X</orcidid><orcidid>https://orcid.org/0000-0001-6038-020X</orcidid><orcidid>https://orcid.org/000000021601236X</orcidid><orcidid>https://orcid.org/000000016038020X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2017-04, Vol.128 (C), p.345-350 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1397793 |
source | Access via ScienceDirect (Elsevier) |
subjects | Drag effect Grain boundary T1 process T3 process Triple junction angle Triple junction motion |
title | Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple%20junction%20drag%20effects%20during%20topological%20changes%20in%20the%20evolution%20of%20polycrystalline%20microstructures&rft.jtitle=Acta%20materialia&rft.au=Zhao,%20Quan&rft.date=2017-04-15&rft.volume=128&rft.issue=C&rft.spage=345&rft.epage=350&rft.pages=345-350&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2017.02.010&rft_dat=%3Celsevier_osti_%3ES1359645417301015%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645417301015&rfr_iscdi=true |