Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures

Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state nev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2017-04, Vol.128 (C), p.345-350
Hauptverfasser: Zhao, Quan, Jiang, Wei, Srolovitz, David J., Bao, Weizhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue C
container_start_page 345
container_title Acta materialia
container_volume 128
creator Zhao, Quan
Jiang, Wei
Srolovitz, David J.
Bao, Weizhu
description Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively. [Display omitted]
doi_str_mv 10.1016/j.actamat.2017.02.010
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1397793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645417301015</els_id><sourcerecordid>S1359645417301015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwCEgW9wTbceL6hFDFn1SJSzlbjrNJHVK7sh2kvj0O7Z3T7mFmdufLsnuCC4JJ_TgUSke1V7GgmPAC0wITfJEtyIqXOWVVeZn2shJ5zSp2nd2EMGBMKGd4kX1vvTmMgIbJ6micRa1XPYKuAx0DaidvbI-iO7jR9UarEemdsj0EZCyKO0Dw48bpz-g6lFRH7Y8hqnE0FtDeaO9C9JOOk4dwm111agxwd57L7Ov1Zbt-zzefbx_r502uGRMxb1tKMS2JEKSuO846TVaCcEFoQ4HyFdakpbjhrBZMVVg1jaoU1EThqumYYuUyezjlpttGBm0i6J121qZOkpSCc1EmUXUSzS8GD508eLNX_igJljNWOcgzVjljlZjKhDX5nk4-SA1-DPj5AFgNrfFzfuvMPwm_K7-Fvw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhao, Quan ; Jiang, Wei ; Srolovitz, David J. ; Bao, Weizhu</creator><creatorcontrib>Zhao, Quan ; Jiang, Wei ; Srolovitz, David J. ; Bao, Weizhu</creatorcontrib><description>Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2017.02.010</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Drag effect ; Grain boundary ; T1 process ; T3 process ; Triple junction angle ; Triple junction motion</subject><ispartof>Acta materialia, 2017-04, Vol.128 (C), p.345-350</ispartof><rights>2017 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</citedby><cites>FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</cites><orcidid>0000-0002-1601-236X ; 0000-0001-6038-020X ; 000000021601236X ; 000000016038020X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2017.02.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1397793$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Quan</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><creatorcontrib>Bao, Weizhu</creatorcontrib><title>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</title><title>Acta materialia</title><description>Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively. [Display omitted]</description><subject>Drag effect</subject><subject>Grain boundary</subject><subject>T1 process</subject><subject>T3 process</subject><subject>Triple junction angle</subject><subject>Triple junction motion</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwCEgW9wTbceL6hFDFn1SJSzlbjrNJHVK7sh2kvj0O7Z3T7mFmdufLsnuCC4JJ_TgUSke1V7GgmPAC0wITfJEtyIqXOWVVeZn2shJ5zSp2nd2EMGBMKGd4kX1vvTmMgIbJ6micRa1XPYKuAx0DaidvbI-iO7jR9UarEemdsj0EZCyKO0Dw48bpz-g6lFRH7Y8hqnE0FtDeaO9C9JOOk4dwm111agxwd57L7Ov1Zbt-zzefbx_r502uGRMxb1tKMS2JEKSuO846TVaCcEFoQ4HyFdakpbjhrBZMVVg1jaoU1EThqumYYuUyezjlpttGBm0i6J121qZOkpSCc1EmUXUSzS8GD508eLNX_igJljNWOcgzVjljlZjKhDX5nk4-SA1-DPj5AFgNrfFzfuvMPwm_K7-Fvw</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Zhao, Quan</creator><creator>Jiang, Wei</creator><creator>Srolovitz, David J.</creator><creator>Bao, Weizhu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1601-236X</orcidid><orcidid>https://orcid.org/0000-0001-6038-020X</orcidid><orcidid>https://orcid.org/000000021601236X</orcidid><orcidid>https://orcid.org/000000016038020X</orcidid></search><sort><creationdate>20170415</creationdate><title>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</title><author>Zhao, Quan ; Jiang, Wei ; Srolovitz, David J. ; Bao, Weizhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-dd22023199166f74fc18917912b2e2780c1d20b74694a50abba5ae61a05bf4a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Drag effect</topic><topic>Grain boundary</topic><topic>T1 process</topic><topic>T3 process</topic><topic>Triple junction angle</topic><topic>Triple junction motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Quan</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Srolovitz, David J.</creatorcontrib><creatorcontrib>Bao, Weizhu</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Quan</au><au>Jiang, Wei</au><au>Srolovitz, David J.</au><au>Bao, Weizhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures</atitle><jtitle>Acta materialia</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>128</volume><issue>C</issue><spage>345</spage><epage>350</epage><pages>345-350</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Experiments, theory and atomistic simulations show that finite triple junction mobility results in non-equilibrium triple junction angles in evolving polycrystalline systems. These angles have been predicted and verified for cases where grain boundary migration is steady-state. Yet, steady-state never occurs during the evolution of polycrystalline microstructures as a result of changing grain size and topological events (e.g., grain face/edge switching - “T1” process, or grain disappearance “T2” or “T3” processes). We examine the non-steady evolution of the triple junction angle in the vicinity of topological events and show that large deviations from equilibrium and/or steady-state angles occur. We analyze $∖tau$ the characteristic relaxation time of triple junction angles τ by consideration of a pair of topological events, beginning from steady-state migration. Using numerical results and theoretical analysis we predict how the triple junction angle varies with time and how τ varies with triple junction mobility. We argue that it is precisely those cases where grain boundaries are moving quickly (e.g., topological process in nanocrystalline materials), that the classical steady-state prediction of the triple junction angle about finite triple junction mobility is inapplicable and may only be applied qualitatively. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2017.02.010</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1601-236X</orcidid><orcidid>https://orcid.org/0000-0001-6038-020X</orcidid><orcidid>https://orcid.org/000000021601236X</orcidid><orcidid>https://orcid.org/000000016038020X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2017-04, Vol.128 (C), p.345-350
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1397793
source Access via ScienceDirect (Elsevier)
subjects Drag effect
Grain boundary
T1 process
T3 process
Triple junction angle
Triple junction motion
title Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triple%20junction%20drag%20effects%20during%20topological%20changes%20in%20the%20evolution%20of%20polycrystalline%20microstructures&rft.jtitle=Acta%20materialia&rft.au=Zhao,%20Quan&rft.date=2017-04-15&rft.volume=128&rft.issue=C&rft.spage=345&rft.epage=350&rft.pages=345-350&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2017.02.010&rft_dat=%3Celsevier_osti_%3ES1359645417301015%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645417301015&rfr_iscdi=true