Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling

The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The ‘calibration transfer’ approach proposes to combine calibration data already recorded with actual calibrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2017-01, Vol.951 (C), p.32-45
Hauptverfasser: Seichter, Felicia, Vogt, Josef, Radermacher, Peter, Mizaikoff, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue C
container_start_page 32
container_title Analytica chimica acta
container_volume 951
creator Seichter, Felicia
Vogt, Josef
Radermacher, Peter
Mizaikoff, Boris
description The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The ‘calibration transfer’ approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time. [Display omitted] •The inter-occasional distribution of coefficients for a nonlinear calibration curve is assessed.•Coefficients of an actual calibration curve are a sample of the inter-occasional distribution.•This sample and few actual measurements are sufficient to assess an actual calibration curve.•A new calibration transfer method is proposed using minimal calibration effort.•The model is confirmed by random subset cross validation for the calibration of an oxygen sensor.
doi_str_mv 10.1016/j.aca.2016.11.025
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1396850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267016313174</els_id><sourcerecordid>1914588495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-8e05d3534edbbf4c73c97f5caacbd9c8f982def50ad383976829ca96dc31cd5d3</originalsourceid><addsrcrecordid>eNp9kbuOEzEUhkcIxC4LD0CDLGhoEuyxJ2NDBdFykRJooLbO2GcSh4kd7JlI2_EOvAGPxpNwoiwUFFS-6Du__PurqseCzwUXixe7OTiY17SdCzHndXOnuhS6lTMla3W3uuScy1m9aPlF9aCUHR1rwdX96qJujdFKq8vq58cUhxARMnMwhC7DGFJkY4ZYesysg4Ke0c02YIbstoEw9gZusASIbJ88DoVB9GwFGxraIFtPwxgOA_HlJbvOOVFKmqIvLPUMyxj2MGJhxwBsneKIbAl5SOzX9x9sDflrOrLlFkJkBfaUEjcPq3s9DAUf3a5X1Ze315-X72erT-8-LF-vZk41Ypxp5I2XjVTou65XrpXOtH3jAFznjdO90bXHvuHgpZamXejaODAL76Rwnkavqqfn3ERvtMWFEd3WpRjRjVZIs9ANJ-j5GTrk9G2iNnYfisNhgIhpKlboRkjeGKMIffYPuktTjlTBCiNUo7UyDVHiTLmcSsnY20OmH8o3VnB7smx3lizbk2UrhCXLNPPkNnnq9uj_TvzRSsCrM0By8EgmTnUwOvQhn9r4FP4T_xsv-br4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914588495</pqid></control><display><type>article</type><title>Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Seichter, Felicia ; Vogt, Josef ; Radermacher, Peter ; Mizaikoff, Boris</creator><creatorcontrib>Seichter, Felicia ; Vogt, Josef ; Radermacher, Peter ; Mizaikoff, Boris</creatorcontrib><description>The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The ‘calibration transfer’ approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time. [Display omitted] •The inter-occasional distribution of coefficients for a nonlinear calibration curve is assessed.•Coefficients of an actual calibration curve are a sample of the inter-occasional distribution.•This sample and few actual measurements are sufficient to assess an actual calibration curve.•A new calibration transfer method is proposed using minimal calibration effort.•The model is confirmed by random subset cross validation for the calibration of an oxygen sensor.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2016.11.025</identifier><identifier>PMID: 27998484</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Accuracy ; Bayesian analysis ; Bayesian statistics ; Calibration ; Calibration transfer ; Coefficients ; Computer simulation ; Data processing ; Error analysis ; Estimates ; Fluctuations ; Fluorescence ; Hierarchical models ; Just in time ; Lagrange multiplier ; Lagrange Multipliers ; Linear analysis ; Markov chains ; Mathematical models ; Monte Carlo simulation ; Oxygen sensor ; Routines ; Sampling ; Sensors ; Spectroscopic analysis ; Systems analysis</subject><ispartof>Analytica chimica acta, 2017-01, Vol.951 (C), p.32-45</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Jan 25, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-8e05d3534edbbf4c73c97f5caacbd9c8f982def50ad383976829ca96dc31cd5d3</citedby><cites>FETCH-LOGICAL-c451t-8e05d3534edbbf4c73c97f5caacbd9c8f982def50ad383976829ca96dc31cd5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2016.11.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27998484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1396850$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Seichter, Felicia</creatorcontrib><creatorcontrib>Vogt, Josef</creatorcontrib><creatorcontrib>Radermacher, Peter</creatorcontrib><creatorcontrib>Mizaikoff, Boris</creatorcontrib><title>Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The ‘calibration transfer’ approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time. [Display omitted] •The inter-occasional distribution of coefficients for a nonlinear calibration curve is assessed.•Coefficients of an actual calibration curve are a sample of the inter-occasional distribution.•This sample and few actual measurements are sufficient to assess an actual calibration curve.•A new calibration transfer method is proposed using minimal calibration effort.•The model is confirmed by random subset cross validation for the calibration of an oxygen sensor.</description><subject>Accuracy</subject><subject>Bayesian analysis</subject><subject>Bayesian statistics</subject><subject>Calibration</subject><subject>Calibration transfer</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Fluctuations</subject><subject>Fluorescence</subject><subject>Hierarchical models</subject><subject>Just in time</subject><subject>Lagrange multiplier</subject><subject>Lagrange Multipliers</subject><subject>Linear analysis</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Oxygen sensor</subject><subject>Routines</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Spectroscopic analysis</subject><subject>Systems analysis</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kbuOEzEUhkcIxC4LD0CDLGhoEuyxJ2NDBdFykRJooLbO2GcSh4kd7JlI2_EOvAGPxpNwoiwUFFS-6Du__PurqseCzwUXixe7OTiY17SdCzHndXOnuhS6lTMla3W3uuScy1m9aPlF9aCUHR1rwdX96qJujdFKq8vq58cUhxARMnMwhC7DGFJkY4ZYesysg4Ke0c02YIbstoEw9gZusASIbJ88DoVB9GwFGxraIFtPwxgOA_HlJbvOOVFKmqIvLPUMyxj2MGJhxwBsneKIbAl5SOzX9x9sDflrOrLlFkJkBfaUEjcPq3s9DAUf3a5X1Ze315-X72erT-8-LF-vZk41Ypxp5I2XjVTou65XrpXOtH3jAFznjdO90bXHvuHgpZamXejaODAL76Rwnkavqqfn3ERvtMWFEd3WpRjRjVZIs9ANJ-j5GTrk9G2iNnYfisNhgIhpKlboRkjeGKMIffYPuktTjlTBCiNUo7UyDVHiTLmcSsnY20OmH8o3VnB7smx3lizbk2UrhCXLNPPkNnnq9uj_TvzRSsCrM0By8EgmTnUwOvQhn9r4FP4T_xsv-br4</recordid><startdate>20170125</startdate><enddate>20170125</enddate><creator>Seichter, Felicia</creator><creator>Vogt, Josef</creator><creator>Radermacher, Peter</creator><creator>Mizaikoff, Boris</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20170125</creationdate><title>Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling</title><author>Seichter, Felicia ; Vogt, Josef ; Radermacher, Peter ; Mizaikoff, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-8e05d3534edbbf4c73c97f5caacbd9c8f982def50ad383976829ca96dc31cd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Bayesian analysis</topic><topic>Bayesian statistics</topic><topic>Calibration</topic><topic>Calibration transfer</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Fluctuations</topic><topic>Fluorescence</topic><topic>Hierarchical models</topic><topic>Just in time</topic><topic>Lagrange multiplier</topic><topic>Lagrange Multipliers</topic><topic>Linear analysis</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Oxygen sensor</topic><topic>Routines</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Spectroscopic analysis</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seichter, Felicia</creatorcontrib><creatorcontrib>Vogt, Josef</creatorcontrib><creatorcontrib>Radermacher, Peter</creatorcontrib><creatorcontrib>Mizaikoff, Boris</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seichter, Felicia</au><au>Vogt, Josef</au><au>Radermacher, Peter</au><au>Mizaikoff, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2017-01-25</date><risdate>2017</risdate><volume>951</volume><issue>C</issue><spage>32</spage><epage>45</epage><pages>32-45</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The ‘calibration transfer’ approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time. [Display omitted] •The inter-occasional distribution of coefficients for a nonlinear calibration curve is assessed.•Coefficients of an actual calibration curve are a sample of the inter-occasional distribution.•This sample and few actual measurements are sufficient to assess an actual calibration curve.•A new calibration transfer method is proposed using minimal calibration effort.•The model is confirmed by random subset cross validation for the calibration of an oxygen sensor.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27998484</pmid><doi>10.1016/j.aca.2016.11.025</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2017-01, Vol.951 (C), p.32-45
issn 0003-2670
1873-4324
language eng
recordid cdi_osti_scitechconnect_1396850
source Access via ScienceDirect (Elsevier)
subjects Accuracy
Bayesian analysis
Bayesian statistics
Calibration
Calibration transfer
Coefficients
Computer simulation
Data processing
Error analysis
Estimates
Fluctuations
Fluorescence
Hierarchical models
Just in time
Lagrange multiplier
Lagrange Multipliers
Linear analysis
Markov chains
Mathematical models
Monte Carlo simulation
Oxygen sensor
Routines
Sampling
Sensors
Spectroscopic analysis
Systems analysis
title Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo – Markov Chain sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20calibration%20transfer%20based%20on%20hierarchical%20Bayesian%20models%20and%20Lagrange%20Multipliers:%20Error%20bounds%20of%20estimates%20via%20Monte%20Carlo%20%E2%80%93%20Markov%20Chain%20sampling&rft.jtitle=Analytica%20chimica%20acta&rft.au=Seichter,%20Felicia&rft.date=2017-01-25&rft.volume=951&rft.issue=C&rft.spage=32&rft.epage=45&rft.pages=32-45&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2016.11.025&rft_dat=%3Cproquest_osti_%3E1914588495%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914588495&rft_id=info:pmid/27998484&rft_els_id=S0003267016313174&rfr_iscdi=true