The GaAs/GaAs/Si solar cell – Towards current matching in an integrated two terminal tandem
Non-concentrating tandem solar cells offer the potential to increase conversion efficiencies beyond 30%. Of particular interest are configurations with a silicon bottom cell – to leverage existing manufacturing infrastructure – and III-V compound semiconductor top cells to combine high efficiencies...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2017-02, Vol.160 (C), p.94-100 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | C |
container_start_page | 94 |
container_title | Solar energy materials and solar cells |
container_volume | 160 |
creator | Ren, Zekun Liu, Haohui Liu, Zhe Tan, Chuan Seng Aberle, Armin G. Buonassisi, Tonio Peters, Ian Marius |
description | Non-concentrating tandem solar cells offer the potential to increase conversion efficiencies beyond 30%. Of particular interest are configurations with a silicon bottom cell – to leverage existing manufacturing infrastructure – and III-V compound semiconductor top cells to combine high efficiencies with long-term stability and experience in applications. In this work we investigate the GaAs/GaAs/Si triple-junction architecture. GaAs and Si form a non-ideal bandgap combination, which poses a challenge to the current matching requirement. As band-to-band absorption in GaAs is almost two thirds of that in Si, absorption can be balanced by replacing the GaAs top junction with a GaAs/GaAs double junction. This opens up a possibility for an integrated two terminal solar cell for the GaAs-Si material system. In this study, we numerically evaluate the efficiency and energy yield potential of the GaAs/GaAs/Si triple-junction architecture. We find that, with state-of-the-art material quality, the GaAs/GaAs/Si architecture has the potential to achieve 33.0% efficiency, and harvesting efficiencies between 31.4% and 32.1%. We fabricated a GaAs/GaAs/Si four-terminal tandem solar cell with a mathematically combined efficiency of 20.4%. |
doi_str_mv | 10.1016/j.solmat.2016.10.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1396836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024816304391</els_id><sourcerecordid>1956020431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-7f8fadfcccaa0bfa2f37f329e6f2be5805da2df4271ca0d3d8a134c8e38f107a3</originalsourceid><addsrcrecordid>eNp9UMtOHDEQtFAiZUP4gxwscp7Fj9kZzyUSQgSQkDiwOSKrsdusV7M2sb1B3PIP_GG-BA_DmUu3ulRdXV2EfOdsyRnvTrbLHMcdlKWoU4WWTPIDsuCqHxopB_WJLNgg-oaJVn0hX3PeMsZEJ9sFuVtvkF7AaT55K7eeVilI1OA40v__Xug6PkGymZp9ShgKrWfMxocH6gOFUGvBhwQFLS1PkRZMOx9gpAWCxd038tnBmPHovR-S37_O12eXzfXNxdXZ6XVj2l6WpnfKgXXGGAB270A42TspBuycuMeVYisLwrpW9NwAs9Iq4LI1CqVynPUgD8nxrBtz8TobX9BsTAwBTdFcDp2SXSX9mEmPKf7ZYy56G_epms2aD6uOCdZKXlntzDIp5pzQ6cfkd5CeNWd6Sltv9Zy2ntKeUPa29nNew_rmX49pcoHBoPVpMmGj_1jgFYiZi3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956020431</pqid></control><display><type>article</type><title>The GaAs/GaAs/Si solar cell – Towards current matching in an integrated two terminal tandem</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ren, Zekun ; Liu, Haohui ; Liu, Zhe ; Tan, Chuan Seng ; Aberle, Armin G. ; Buonassisi, Tonio ; Peters, Ian Marius</creator><creatorcontrib>Ren, Zekun ; Liu, Haohui ; Liu, Zhe ; Tan, Chuan Seng ; Aberle, Armin G. ; Buonassisi, Tonio ; Peters, Ian Marius</creatorcontrib><description>Non-concentrating tandem solar cells offer the potential to increase conversion efficiencies beyond 30%. Of particular interest are configurations with a silicon bottom cell – to leverage existing manufacturing infrastructure – and III-V compound semiconductor top cells to combine high efficiencies with long-term stability and experience in applications. In this work we investigate the GaAs/GaAs/Si triple-junction architecture. GaAs and Si form a non-ideal bandgap combination, which poses a challenge to the current matching requirement. As band-to-band absorption in GaAs is almost two thirds of that in Si, absorption can be balanced by replacing the GaAs top junction with a GaAs/GaAs double junction. This opens up a possibility for an integrated two terminal solar cell for the GaAs-Si material system. In this study, we numerically evaluate the efficiency and energy yield potential of the GaAs/GaAs/Si triple-junction architecture. We find that, with state-of-the-art material quality, the GaAs/GaAs/Si architecture has the potential to achieve 33.0% efficiency, and harvesting efficiencies between 31.4% and 32.1%. We fabricated a GaAs/GaAs/Si four-terminal tandem solar cell with a mathematically combined efficiency of 20.4%.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2016.10.031</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Absorption ; Architecture ; Computing time ; Energy conversion efficiency ; Energy efficiency ; GaAs on Si ; Gallium arsenide ; Group III-V semiconductors ; III-V on Si ; Matching ; One sun tandem solar cell ; Photovoltaic cells ; Silicon ; Solar cells</subject><ispartof>Solar energy materials and solar cells, 2017-02, Vol.160 (C), p.94-100</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-7f8fadfcccaa0bfa2f37f329e6f2be5805da2df4271ca0d3d8a134c8e38f107a3</citedby><cites>FETCH-LOGICAL-c473t-7f8fadfcccaa0bfa2f37f329e6f2be5805da2df4271ca0d3d8a134c8e38f107a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solmat.2016.10.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1396836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ren, Zekun</creatorcontrib><creatorcontrib>Liu, Haohui</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Tan, Chuan Seng</creatorcontrib><creatorcontrib>Aberle, Armin G.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Peters, Ian Marius</creatorcontrib><title>The GaAs/GaAs/Si solar cell – Towards current matching in an integrated two terminal tandem</title><title>Solar energy materials and solar cells</title><description>Non-concentrating tandem solar cells offer the potential to increase conversion efficiencies beyond 30%. Of particular interest are configurations with a silicon bottom cell – to leverage existing manufacturing infrastructure – and III-V compound semiconductor top cells to combine high efficiencies with long-term stability and experience in applications. In this work we investigate the GaAs/GaAs/Si triple-junction architecture. GaAs and Si form a non-ideal bandgap combination, which poses a challenge to the current matching requirement. As band-to-band absorption in GaAs is almost two thirds of that in Si, absorption can be balanced by replacing the GaAs top junction with a GaAs/GaAs double junction. This opens up a possibility for an integrated two terminal solar cell for the GaAs-Si material system. In this study, we numerically evaluate the efficiency and energy yield potential of the GaAs/GaAs/Si triple-junction architecture. We find that, with state-of-the-art material quality, the GaAs/GaAs/Si architecture has the potential to achieve 33.0% efficiency, and harvesting efficiencies between 31.4% and 32.1%. We fabricated a GaAs/GaAs/Si four-terminal tandem solar cell with a mathematically combined efficiency of 20.4%.</description><subject>Absorption</subject><subject>Architecture</subject><subject>Computing time</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>GaAs on Si</subject><subject>Gallium arsenide</subject><subject>Group III-V semiconductors</subject><subject>III-V on Si</subject><subject>Matching</subject><subject>One sun tandem solar cell</subject><subject>Photovoltaic cells</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOHDEQtFAiZUP4gxwscp7Fj9kZzyUSQgSQkDiwOSKrsdusV7M2sb1B3PIP_GG-BA_DmUu3ulRdXV2EfOdsyRnvTrbLHMcdlKWoU4WWTPIDsuCqHxopB_WJLNgg-oaJVn0hX3PeMsZEJ9sFuVtvkF7AaT55K7eeVilI1OA40v__Xug6PkGymZp9ShgKrWfMxocH6gOFUGvBhwQFLS1PkRZMOx9gpAWCxd038tnBmPHovR-S37_O12eXzfXNxdXZ6XVj2l6WpnfKgXXGGAB270A42TspBuycuMeVYisLwrpW9NwAs9Iq4LI1CqVynPUgD8nxrBtz8TobX9BsTAwBTdFcDp2SXSX9mEmPKf7ZYy56G_epms2aD6uOCdZKXlntzDIp5pzQ6cfkd5CeNWd6Sltv9Zy2ntKeUPa29nNew_rmX49pcoHBoPVpMmGj_1jgFYiZi3g</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Ren, Zekun</creator><creator>Liu, Haohui</creator><creator>Liu, Zhe</creator><creator>Tan, Chuan Seng</creator><creator>Aberle, Armin G.</creator><creator>Buonassisi, Tonio</creator><creator>Peters, Ian Marius</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope></search><sort><creationdate>201702</creationdate><title>The GaAs/GaAs/Si solar cell – Towards current matching in an integrated two terminal tandem</title><author>Ren, Zekun ; Liu, Haohui ; Liu, Zhe ; Tan, Chuan Seng ; Aberle, Armin G. ; Buonassisi, Tonio ; Peters, Ian Marius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-7f8fadfcccaa0bfa2f37f329e6f2be5805da2df4271ca0d3d8a134c8e38f107a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Architecture</topic><topic>Computing time</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>GaAs on Si</topic><topic>Gallium arsenide</topic><topic>Group III-V semiconductors</topic><topic>III-V on Si</topic><topic>Matching</topic><topic>One sun tandem solar cell</topic><topic>Photovoltaic cells</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zekun</creatorcontrib><creatorcontrib>Liu, Haohui</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Tan, Chuan Seng</creatorcontrib><creatorcontrib>Aberle, Armin G.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Peters, Ian Marius</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zekun</au><au>Liu, Haohui</au><au>Liu, Zhe</au><au>Tan, Chuan Seng</au><au>Aberle, Armin G.</au><au>Buonassisi, Tonio</au><au>Peters, Ian Marius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The GaAs/GaAs/Si solar cell – Towards current matching in an integrated two terminal tandem</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2017-02</date><risdate>2017</risdate><volume>160</volume><issue>C</issue><spage>94</spage><epage>100</epage><pages>94-100</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Non-concentrating tandem solar cells offer the potential to increase conversion efficiencies beyond 30%. Of particular interest are configurations with a silicon bottom cell – to leverage existing manufacturing infrastructure – and III-V compound semiconductor top cells to combine high efficiencies with long-term stability and experience in applications. In this work we investigate the GaAs/GaAs/Si triple-junction architecture. GaAs and Si form a non-ideal bandgap combination, which poses a challenge to the current matching requirement. As band-to-band absorption in GaAs is almost two thirds of that in Si, absorption can be balanced by replacing the GaAs top junction with a GaAs/GaAs double junction. This opens up a possibility for an integrated two terminal solar cell for the GaAs-Si material system. In this study, we numerically evaluate the efficiency and energy yield potential of the GaAs/GaAs/Si triple-junction architecture. We find that, with state-of-the-art material quality, the GaAs/GaAs/Si architecture has the potential to achieve 33.0% efficiency, and harvesting efficiencies between 31.4% and 32.1%. We fabricated a GaAs/GaAs/Si four-terminal tandem solar cell with a mathematically combined efficiency of 20.4%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2016.10.031</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0248 |
ispartof | Solar energy materials and solar cells, 2017-02, Vol.160 (C), p.94-100 |
issn | 0927-0248 1879-3398 |
language | eng |
recordid | cdi_osti_scitechconnect_1396836 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Absorption Architecture Computing time Energy conversion efficiency Energy efficiency GaAs on Si Gallium arsenide Group III-V semiconductors III-V on Si Matching One sun tandem solar cell Photovoltaic cells Silicon Solar cells |
title | The GaAs/GaAs/Si solar cell – Towards current matching in an integrated two terminal tandem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20GaAs/GaAs/Si%20solar%20cell%20%E2%80%93%20Towards%20current%20matching%20in%20an%20integrated%20two%20terminal%20tandem&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Ren,%20Zekun&rft.date=2017-02&rft.volume=160&rft.issue=C&rft.spage=94&rft.epage=100&rft.pages=94-100&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2016.10.031&rft_dat=%3Cproquest_osti_%3E1956020431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956020431&rft_id=info:pmid/&rft_els_id=S0927024816304391&rfr_iscdi=true |