The Random Ray Method for neutral particle transport
A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially a...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-08, Vol.342 (C), p.229-252 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | C |
container_start_page | 229 |
container_title | Journal of computational physics |
container_volume | 342 |
creator | Tramm, John R. Smith, Kord S. Forget, Benoit Siegel, Andrew R. |
description | A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy. |
doi_str_mv | 10.1016/j.jcp.2017.04.038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1396736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117303170</els_id><sourcerecordid>2064417837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG9Fz62TpE1aPMniP1gRZD2HOE3Ylt2mJllhv70p9ezpzcDvDW8eIdcUCgpU3PVFj2PBgMoCygJ4fUIWFBrImaTilCwAGM2bpqHn5CKEHgDqqqwXpNxsTfahh9btkxyzNxO3rs2s89lgDtHrXTZqHzvcmSxtQxidj5fkzOpdMFd_uiSfT4-b1Uu-fn9-XT2sc-RNFXPBLbdUV1YiAyYqW34Z20KNTDCpW61RoLSiqo1EjhooWplmibrhzFLKl-RmvutC7FTALhrcohsGg1FR3gjJRYJuZ2j07vtgQlS9O_gh5VIMRFlSWXOZKDpT6F0I3lg1-m6v_VFRUFODqlepQTU1qKBUqcHkuZ89Jv340xk_RTADmrbzU4LWdf-4fwFra3e4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064417837</pqid></control><display><type>article</type><title>The Random Ray Method for neutral particle transport</title><source>Elsevier ScienceDirect Journals</source><creator>Tramm, John R. ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</creator><creatorcontrib>Tramm, John R. ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</creatorcontrib><description>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.04.038</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Astrophysics ; Computational grids ; Computational physics ; Computer simulation ; Extreme values ; Gamma rays ; High performance computing ; Method of characteristics ; Neutral particles ; Neutron transport ; Partial differential equations ; Radiative transfer ; Reactor physics ; Reactor simulation ; Reactors ; Simulation ; Stochastic methods ; Studies ; Transport</subject><ispartof>Journal of computational physics, 2017-08, Vol.342 (C), p.229-252</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Aug 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</citedby><cites>FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</cites><orcidid>0000-0002-5397-4402 ; 0000000253974402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2017.04.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1396736$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tramm, John R.</creatorcontrib><creatorcontrib>Smith, Kord S.</creatorcontrib><creatorcontrib>Forget, Benoit</creatorcontrib><creatorcontrib>Siegel, Andrew R.</creatorcontrib><title>The Random Ray Method for neutral particle transport</title><title>Journal of computational physics</title><description>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</description><subject>Astrophysics</subject><subject>Computational grids</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Extreme values</subject><subject>Gamma rays</subject><subject>High performance computing</subject><subject>Method of characteristics</subject><subject>Neutral particles</subject><subject>Neutron transport</subject><subject>Partial differential equations</subject><subject>Radiative transfer</subject><subject>Reactor physics</subject><subject>Reactor simulation</subject><subject>Reactors</subject><subject>Simulation</subject><subject>Stochastic methods</subject><subject>Studies</subject><subject>Transport</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG9Fz62TpE1aPMniP1gRZD2HOE3Ylt2mJllhv70p9ezpzcDvDW8eIdcUCgpU3PVFj2PBgMoCygJ4fUIWFBrImaTilCwAGM2bpqHn5CKEHgDqqqwXpNxsTfahh9btkxyzNxO3rs2s89lgDtHrXTZqHzvcmSxtQxidj5fkzOpdMFd_uiSfT4-b1Uu-fn9-XT2sc-RNFXPBLbdUV1YiAyYqW34Z20KNTDCpW61RoLSiqo1EjhooWplmibrhzFLKl-RmvutC7FTALhrcohsGg1FR3gjJRYJuZ2j07vtgQlS9O_gh5VIMRFlSWXOZKDpT6F0I3lg1-m6v_VFRUFODqlepQTU1qKBUqcHkuZ89Jv340xk_RTADmrbzU4LWdf-4fwFra3e4</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Tramm, John R.</creator><creator>Smith, Kord S.</creator><creator>Forget, Benoit</creator><creator>Siegel, Andrew R.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5397-4402</orcidid><orcidid>https://orcid.org/0000000253974402</orcidid></search><sort><creationdate>20170801</creationdate><title>The Random Ray Method for neutral particle transport</title><author>Tramm, John R. ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>Computational grids</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Extreme values</topic><topic>Gamma rays</topic><topic>High performance computing</topic><topic>Method of characteristics</topic><topic>Neutral particles</topic><topic>Neutron transport</topic><topic>Partial differential equations</topic><topic>Radiative transfer</topic><topic>Reactor physics</topic><topic>Reactor simulation</topic><topic>Reactors</topic><topic>Simulation</topic><topic>Stochastic methods</topic><topic>Studies</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tramm, John R.</creatorcontrib><creatorcontrib>Smith, Kord S.</creatorcontrib><creatorcontrib>Forget, Benoit</creatorcontrib><creatorcontrib>Siegel, Andrew R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tramm, John R.</au><au>Smith, Kord S.</au><au>Forget, Benoit</au><au>Siegel, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Random Ray Method for neutral particle transport</atitle><jtitle>Journal of computational physics</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>342</volume><issue>C</issue><spage>229</spage><epage>252</epage><pages>229-252</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.04.038</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5397-4402</orcidid><orcidid>https://orcid.org/0000000253974402</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-08, Vol.342 (C), p.229-252 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1396736 |
source | Elsevier ScienceDirect Journals |
subjects | Astrophysics Computational grids Computational physics Computer simulation Extreme values Gamma rays High performance computing Method of characteristics Neutral particles Neutron transport Partial differential equations Radiative transfer Reactor physics Reactor simulation Reactors Simulation Stochastic methods Studies Transport |
title | The Random Ray Method for neutral particle transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Random%20Ray%20Method%20for%20neutral%20particle%20transport&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Tramm,%20John%20R.&rft.date=2017-08-01&rft.volume=342&rft.issue=C&rft.spage=229&rft.epage=252&rft.pages=229-252&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.04.038&rft_dat=%3Cproquest_osti_%3E2064417837%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064417837&rft_id=info:pmid/&rft_els_id=S0021999117303170&rfr_iscdi=true |