The Random Ray Method for neutral particle transport

A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-08, Vol.342 (C), p.229-252
Hauptverfasser: Tramm, John R., Smith, Kord S., Forget, Benoit, Siegel, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue C
container_start_page 229
container_title Journal of computational physics
container_volume 342
creator Tramm, John R.
Smith, Kord S.
Forget, Benoit
Siegel, Andrew R.
description A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.
doi_str_mv 10.1016/j.jcp.2017.04.038
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1396736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117303170</els_id><sourcerecordid>2064417837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG9Fz62TpE1aPMniP1gRZD2HOE3Ylt2mJllhv70p9ezpzcDvDW8eIdcUCgpU3PVFj2PBgMoCygJ4fUIWFBrImaTilCwAGM2bpqHn5CKEHgDqqqwXpNxsTfahh9btkxyzNxO3rs2s89lgDtHrXTZqHzvcmSxtQxidj5fkzOpdMFd_uiSfT4-b1Uu-fn9-XT2sc-RNFXPBLbdUV1YiAyYqW34Z20KNTDCpW61RoLSiqo1EjhooWplmibrhzFLKl-RmvutC7FTALhrcohsGg1FR3gjJRYJuZ2j07vtgQlS9O_gh5VIMRFlSWXOZKDpT6F0I3lg1-m6v_VFRUFODqlepQTU1qKBUqcHkuZ89Jv340xk_RTADmrbzU4LWdf-4fwFra3e4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064417837</pqid></control><display><type>article</type><title>The Random Ray Method for neutral particle transport</title><source>Elsevier ScienceDirect Journals</source><creator>Tramm, John R. ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</creator><creatorcontrib>Tramm, John R. ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</creatorcontrib><description>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.04.038</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Astrophysics ; Computational grids ; Computational physics ; Computer simulation ; Extreme values ; Gamma rays ; High performance computing ; Method of characteristics ; Neutral particles ; Neutron transport ; Partial differential equations ; Radiative transfer ; Reactor physics ; Reactor simulation ; Reactors ; Simulation ; Stochastic methods ; Studies ; Transport</subject><ispartof>Journal of computational physics, 2017-08, Vol.342 (C), p.229-252</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Aug 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</citedby><cites>FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</cites><orcidid>0000-0002-5397-4402 ; 0000000253974402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2017.04.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1396736$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tramm, John R.</creatorcontrib><creatorcontrib>Smith, Kord S.</creatorcontrib><creatorcontrib>Forget, Benoit</creatorcontrib><creatorcontrib>Siegel, Andrew R.</creatorcontrib><title>The Random Ray Method for neutral particle transport</title><title>Journal of computational physics</title><description>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</description><subject>Astrophysics</subject><subject>Computational grids</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Extreme values</subject><subject>Gamma rays</subject><subject>High performance computing</subject><subject>Method of characteristics</subject><subject>Neutral particles</subject><subject>Neutron transport</subject><subject>Partial differential equations</subject><subject>Radiative transfer</subject><subject>Reactor physics</subject><subject>Reactor simulation</subject><subject>Reactors</subject><subject>Simulation</subject><subject>Stochastic methods</subject><subject>Studies</subject><subject>Transport</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG9Fz62TpE1aPMniP1gRZD2HOE3Ylt2mJllhv70p9ezpzcDvDW8eIdcUCgpU3PVFj2PBgMoCygJ4fUIWFBrImaTilCwAGM2bpqHn5CKEHgDqqqwXpNxsTfahh9btkxyzNxO3rs2s89lgDtHrXTZqHzvcmSxtQxidj5fkzOpdMFd_uiSfT4-b1Uu-fn9-XT2sc-RNFXPBLbdUV1YiAyYqW34Z20KNTDCpW61RoLSiqo1EjhooWplmibrhzFLKl-RmvutC7FTALhrcohsGg1FR3gjJRYJuZ2j07vtgQlS9O_gh5VIMRFlSWXOZKDpT6F0I3lg1-m6v_VFRUFODqlepQTU1qKBUqcHkuZ89Jv340xk_RTADmrbzU4LWdf-4fwFra3e4</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Tramm, John R.</creator><creator>Smith, Kord S.</creator><creator>Forget, Benoit</creator><creator>Siegel, Andrew R.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5397-4402</orcidid><orcidid>https://orcid.org/0000000253974402</orcidid></search><sort><creationdate>20170801</creationdate><title>The Random Ray Method for neutral particle transport</title><author>Tramm, John R. ; Smith, Kord S. ; Forget, Benoit ; Siegel, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-63f3f1a5f7c20265f4befd08c2627adaac6c7f658e7c3ca01cf78e77ca932f113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astrophysics</topic><topic>Computational grids</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Extreme values</topic><topic>Gamma rays</topic><topic>High performance computing</topic><topic>Method of characteristics</topic><topic>Neutral particles</topic><topic>Neutron transport</topic><topic>Partial differential equations</topic><topic>Radiative transfer</topic><topic>Reactor physics</topic><topic>Reactor simulation</topic><topic>Reactors</topic><topic>Simulation</topic><topic>Stochastic methods</topic><topic>Studies</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tramm, John R.</creatorcontrib><creatorcontrib>Smith, Kord S.</creatorcontrib><creatorcontrib>Forget, Benoit</creatorcontrib><creatorcontrib>Siegel, Andrew R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tramm, John R.</au><au>Smith, Kord S.</au><au>Forget, Benoit</au><au>Siegel, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Random Ray Method for neutral particle transport</atitle><jtitle>Journal of computational physics</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>342</volume><issue>C</issue><spage>229</spage><epage>252</epage><pages>229-252</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.04.038</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5397-4402</orcidid><orcidid>https://orcid.org/0000000253974402</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-08, Vol.342 (C), p.229-252
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1396736
source Elsevier ScienceDirect Journals
subjects Astrophysics
Computational grids
Computational physics
Computer simulation
Extreme values
Gamma rays
High performance computing
Method of characteristics
Neutral particles
Neutron transport
Partial differential equations
Radiative transfer
Reactor physics
Reactor simulation
Reactors
Simulation
Stochastic methods
Studies
Transport
title The Random Ray Method for neutral particle transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Random%20Ray%20Method%20for%20neutral%20particle%20transport&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Tramm,%20John%20R.&rft.date=2017-08-01&rft.volume=342&rft.issue=C&rft.spage=229&rft.epage=252&rft.pages=229-252&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.04.038&rft_dat=%3Cproquest_osti_%3E2064417837%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064417837&rft_id=info:pmid/&rft_els_id=S0021999117303170&rfr_iscdi=true