On the potential and limits of large area seeding for photovoltaic silicon

Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2016-10, Vol.452 (C), p.272-275
Hauptverfasser: Stoddard, Nathan, Gründig-Wendrock, Bianca, Krause, Andreas, Oriwol, Daniel, Bertoni, Mariana, Naerland, Tine Uberg, Witting, Ian, Sylla, Lamine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue C
container_start_page 272
container_title Journal of crystal growth
container_volume 452
creator Stoddard, Nathan
Gründig-Wendrock, Bianca
Krause, Andreas
Oriwol, Daniel
Bertoni, Mariana
Naerland, Tine Uberg
Witting, Ian
Sylla, Lamine
description Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique. •We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material.
doi_str_mv 10.1016/j.jcrysgro.2016.04.056
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1396647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024816302020</els_id><sourcerecordid>S0022024816302020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQYL3XSebbLK9KcW_FHrRc4jZSZtluylJKPjtTamevcww8N483o-QWwY1Aybvh3qw8TttYqibctcgamjlGZmxTvGqBWjOyazMpoJGdJfkKqUBoCgZzMj7eqJ5i3QfMk7Zm5Gaqaej3_mcaHB0NHGD1EQ0NCH2ftpQFyLdb0MOhzBm4y1NfvQ2TNfkwpkx4c3vnpPP56eP5Wu1Wr-8LR9XleWdytUCQHLJlJVKCgMNZ81XKwHQSmC8N6btXS-54I5hr1TDHSIo0YrGukUnOj4nd6e_IWWvk_UZ7bbkT2izZnwhpVBFJE8iG0NKEZ3eR78z8Vsz0EdsetB_2PQRmwahC7ZifDgZsVQ4eIzHBJxs6R6PAX3w_734AdUBeSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the potential and limits of large area seeding for photovoltaic silicon</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Stoddard, Nathan ; Gründig-Wendrock, Bianca ; Krause, Andreas ; Oriwol, Daniel ; Bertoni, Mariana ; Naerland, Tine Uberg ; Witting, Ian ; Sylla, Lamine</creator><creatorcontrib>Stoddard, Nathan ; Gründig-Wendrock, Bianca ; Krause, Andreas ; Oriwol, Daniel ; Bertoni, Mariana ; Naerland, Tine Uberg ; Witting, Ian ; Sylla, Lamine</creatorcontrib><description>Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique. •We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2016.04.056</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>A1. Directional solidification ; A2. Seed crystals ; B2. Semiconducting silicon ; B3. Solar cells</subject><ispartof>Journal of crystal growth, 2016-10, Vol.452 (C), p.272-275</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</citedby><cites>FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2016.04.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1396647$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoddard, Nathan</creatorcontrib><creatorcontrib>Gründig-Wendrock, Bianca</creatorcontrib><creatorcontrib>Krause, Andreas</creatorcontrib><creatorcontrib>Oriwol, Daniel</creatorcontrib><creatorcontrib>Bertoni, Mariana</creatorcontrib><creatorcontrib>Naerland, Tine Uberg</creatorcontrib><creatorcontrib>Witting, Ian</creatorcontrib><creatorcontrib>Sylla, Lamine</creatorcontrib><title>On the potential and limits of large area seeding for photovoltaic silicon</title><title>Journal of crystal growth</title><description>Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique. •We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material.</description><subject>A1. Directional solidification</subject><subject>A2. Seed crystals</subject><subject>B2. Semiconducting silicon</subject><subject>B3. Solar cells</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQYL3XSebbLK9KcW_FHrRc4jZSZtluylJKPjtTamevcww8N483o-QWwY1Aybvh3qw8TttYqibctcgamjlGZmxTvGqBWjOyazMpoJGdJfkKqUBoCgZzMj7eqJ5i3QfMk7Zm5Gaqaej3_mcaHB0NHGD1EQ0NCH2ftpQFyLdb0MOhzBm4y1NfvQ2TNfkwpkx4c3vnpPP56eP5Wu1Wr-8LR9XleWdytUCQHLJlJVKCgMNZ81XKwHQSmC8N6btXS-54I5hr1TDHSIo0YrGukUnOj4nd6e_IWWvk_UZ7bbkT2izZnwhpVBFJE8iG0NKEZ3eR78z8Vsz0EdsetB_2PQRmwahC7ZifDgZsVQ4eIzHBJxs6R6PAX3w_734AdUBeSI</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Stoddard, Nathan</creator><creator>Gründig-Wendrock, Bianca</creator><creator>Krause, Andreas</creator><creator>Oriwol, Daniel</creator><creator>Bertoni, Mariana</creator><creator>Naerland, Tine Uberg</creator><creator>Witting, Ian</creator><creator>Sylla, Lamine</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20161015</creationdate><title>On the potential and limits of large area seeding for photovoltaic silicon</title><author>Stoddard, Nathan ; Gründig-Wendrock, Bianca ; Krause, Andreas ; Oriwol, Daniel ; Bertoni, Mariana ; Naerland, Tine Uberg ; Witting, Ian ; Sylla, Lamine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A1. Directional solidification</topic><topic>A2. Seed crystals</topic><topic>B2. Semiconducting silicon</topic><topic>B3. Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoddard, Nathan</creatorcontrib><creatorcontrib>Gründig-Wendrock, Bianca</creatorcontrib><creatorcontrib>Krause, Andreas</creatorcontrib><creatorcontrib>Oriwol, Daniel</creatorcontrib><creatorcontrib>Bertoni, Mariana</creatorcontrib><creatorcontrib>Naerland, Tine Uberg</creatorcontrib><creatorcontrib>Witting, Ian</creatorcontrib><creatorcontrib>Sylla, Lamine</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoddard, Nathan</au><au>Gründig-Wendrock, Bianca</au><au>Krause, Andreas</au><au>Oriwol, Daniel</au><au>Bertoni, Mariana</au><au>Naerland, Tine Uberg</au><au>Witting, Ian</au><au>Sylla, Lamine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the potential and limits of large area seeding for photovoltaic silicon</atitle><jtitle>Journal of crystal growth</jtitle><date>2016-10-15</date><risdate>2016</risdate><volume>452</volume><issue>C</issue><spage>272</spage><epage>275</epage><pages>272-275</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique. •We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2016.04.056</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2016-10, Vol.452 (C), p.272-275
issn 0022-0248
1873-5002
language eng
recordid cdi_osti_scitechconnect_1396647
source ScienceDirect Journals (5 years ago - present)
subjects A1. Directional solidification
A2. Seed crystals
B2. Semiconducting silicon
B3. Solar cells
title On the potential and limits of large area seeding for photovoltaic silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20potential%20and%20limits%20of%20large%20area%20seeding%20for%20photovoltaic%20silicon&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Stoddard,%20Nathan&rft.date=2016-10-15&rft.volume=452&rft.issue=C&rft.spage=272&rft.epage=275&rft.pages=272-275&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2016.04.056&rft_dat=%3Celsevier_osti_%3ES0022024816302020%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022024816302020&rfr_iscdi=true