On the potential and limits of large area seeding for photovoltaic silicon
Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some st...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2016-10, Vol.452 (C), p.272-275 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | C |
container_start_page | 272 |
container_title | Journal of crystal growth |
container_volume | 452 |
creator | Stoddard, Nathan Gründig-Wendrock, Bianca Krause, Andreas Oriwol, Daniel Bertoni, Mariana Naerland, Tine Uberg Witting, Ian Sylla, Lamine |
description | Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique.
•We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material. |
doi_str_mv | 10.1016/j.jcrysgro.2016.04.056 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1396647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024816302020</els_id><sourcerecordid>S0022024816302020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKtfQYL3XSebbLK9KcW_FHrRc4jZSZtluylJKPjtTamevcww8N483o-QWwY1Aybvh3qw8TttYqibctcgamjlGZmxTvGqBWjOyazMpoJGdJfkKqUBoCgZzMj7eqJ5i3QfMk7Zm5Gaqaej3_mcaHB0NHGD1EQ0NCH2ftpQFyLdb0MOhzBm4y1NfvQ2TNfkwpkx4c3vnpPP56eP5Wu1Wr-8LR9XleWdytUCQHLJlJVKCgMNZ81XKwHQSmC8N6btXS-54I5hr1TDHSIo0YrGukUnOj4nd6e_IWWvk_UZ7bbkT2izZnwhpVBFJE8iG0NKEZ3eR78z8Vsz0EdsetB_2PQRmwahC7ZifDgZsVQ4eIzHBJxs6R6PAX3w_734AdUBeSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the potential and limits of large area seeding for photovoltaic silicon</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Stoddard, Nathan ; Gründig-Wendrock, Bianca ; Krause, Andreas ; Oriwol, Daniel ; Bertoni, Mariana ; Naerland, Tine Uberg ; Witting, Ian ; Sylla, Lamine</creator><creatorcontrib>Stoddard, Nathan ; Gründig-Wendrock, Bianca ; Krause, Andreas ; Oriwol, Daniel ; Bertoni, Mariana ; Naerland, Tine Uberg ; Witting, Ian ; Sylla, Lamine</creatorcontrib><description>Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique.
•We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2016.04.056</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>A1. Directional solidification ; A2. Seed crystals ; B2. Semiconducting silicon ; B3. Solar cells</subject><ispartof>Journal of crystal growth, 2016-10, Vol.452 (C), p.272-275</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</citedby><cites>FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2016.04.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1396647$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoddard, Nathan</creatorcontrib><creatorcontrib>Gründig-Wendrock, Bianca</creatorcontrib><creatorcontrib>Krause, Andreas</creatorcontrib><creatorcontrib>Oriwol, Daniel</creatorcontrib><creatorcontrib>Bertoni, Mariana</creatorcontrib><creatorcontrib>Naerland, Tine Uberg</creatorcontrib><creatorcontrib>Witting, Ian</creatorcontrib><creatorcontrib>Sylla, Lamine</creatorcontrib><title>On the potential and limits of large area seeding for photovoltaic silicon</title><title>Journal of crystal growth</title><description>Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique.
•We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material.</description><subject>A1. Directional solidification</subject><subject>A2. Seed crystals</subject><subject>B2. Semiconducting silicon</subject><subject>B3. Solar cells</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKtfQYL3XSebbLK9KcW_FHrRc4jZSZtluylJKPjtTamevcww8N483o-QWwY1Aybvh3qw8TttYqibctcgamjlGZmxTvGqBWjOyazMpoJGdJfkKqUBoCgZzMj7eqJ5i3QfMk7Zm5Gaqaej3_mcaHB0NHGD1EQ0NCH2ftpQFyLdb0MOhzBm4y1NfvQ2TNfkwpkx4c3vnpPP56eP5Wu1Wr-8LR9XleWdytUCQHLJlJVKCgMNZ81XKwHQSmC8N6btXS-54I5hr1TDHSIo0YrGukUnOj4nd6e_IWWvk_UZ7bbkT2izZnwhpVBFJE8iG0NKEZ3eR78z8Vsz0EdsetB_2PQRmwahC7ZifDgZsVQ4eIzHBJxs6R6PAX3w_734AdUBeSI</recordid><startdate>20161015</startdate><enddate>20161015</enddate><creator>Stoddard, Nathan</creator><creator>Gründig-Wendrock, Bianca</creator><creator>Krause, Andreas</creator><creator>Oriwol, Daniel</creator><creator>Bertoni, Mariana</creator><creator>Naerland, Tine Uberg</creator><creator>Witting, Ian</creator><creator>Sylla, Lamine</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20161015</creationdate><title>On the potential and limits of large area seeding for photovoltaic silicon</title><author>Stoddard, Nathan ; Gründig-Wendrock, Bianca ; Krause, Andreas ; Oriwol, Daniel ; Bertoni, Mariana ; Naerland, Tine Uberg ; Witting, Ian ; Sylla, Lamine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-90063617c6764a02312b5600ec6013daa5dfd6343f1ed7723fee074542cf98483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A1. Directional solidification</topic><topic>A2. Seed crystals</topic><topic>B2. Semiconducting silicon</topic><topic>B3. Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoddard, Nathan</creatorcontrib><creatorcontrib>Gründig-Wendrock, Bianca</creatorcontrib><creatorcontrib>Krause, Andreas</creatorcontrib><creatorcontrib>Oriwol, Daniel</creatorcontrib><creatorcontrib>Bertoni, Mariana</creatorcontrib><creatorcontrib>Naerland, Tine Uberg</creatorcontrib><creatorcontrib>Witting, Ian</creatorcontrib><creatorcontrib>Sylla, Lamine</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoddard, Nathan</au><au>Gründig-Wendrock, Bianca</au><au>Krause, Andreas</au><au>Oriwol, Daniel</au><au>Bertoni, Mariana</au><au>Naerland, Tine Uberg</au><au>Witting, Ian</au><au>Sylla, Lamine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the potential and limits of large area seeding for photovoltaic silicon</atitle><jtitle>Journal of crystal growth</jtitle><date>2016-10-15</date><risdate>2016</risdate><volume>452</volume><issue>C</issue><spage>272</spage><epage>275</epage><pages>272-275</pages><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>Single crystal production of silicon for solar cell substrates has relied on the Dash neck technique developed more than 50 years ago. The technique is simple and repeatable and enables truly dislocation free crystal growth. It does have drawbacks, however, including limits on throughput and some structural difficulties. It has long been assumed that dislocation-free growth is not possible by any other method. In the ‘quasi-mono’ crystal growth technique, one of the key elements is the use of large area single crystal seeds. By melting the seeds at near-equilibrium conditions, it is feasible to avoid the production of dislocations during melting. We will review the dislocation relevant details of the large area seeding process and present best case results for dislocation density, including measured minority carrier lifetimes in excess of 1ms on p-type material. We will focus on dislocation density exclusive of seed boundaries, but we will also present a potential best-case limit for the technique.
•We show feasibility to have very low dislocation densities without a Dash neck.•Abrupt increases in minority carrier lifetime are seen at start of crystal growth.•Measured lifetime in excess of 1ms on p-type directionally solidified material.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2016.04.056</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2016-10, Vol.452 (C), p.272-275 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1396647 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A1. Directional solidification A2. Seed crystals B2. Semiconducting silicon B3. Solar cells |
title | On the potential and limits of large area seeding for photovoltaic silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20potential%20and%20limits%20of%20large%20area%20seeding%20for%20photovoltaic%20silicon&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Stoddard,%20Nathan&rft.date=2016-10-15&rft.volume=452&rft.issue=C&rft.spage=272&rft.epage=275&rft.pages=272-275&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2016.04.056&rft_dat=%3Celsevier_osti_%3ES0022024816302020%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022024816302020&rfr_iscdi=true |