Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory

We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-07, Vol.119 (2), p.025001-025001, Article 025001
Hauptverfasser: Schaeffer, D B, Fox, W, Haberberger, D, Fiksel, G, Bhattacharjee, A, Barnak, D H, Hu, S X, Germaschewski, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 025001
container_issue 2
container_start_page 025001
container_title Physical review letters
container_volume 119
creator Schaeffer, D B
Fox, W
Haberberger, D
Fiksel, G
Bhattacharjee, A
Barnak, D H
Hu, S X
Germaschewski, K
description We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.
doi_str_mv 10.1103/physrevlett.119.025001
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1395788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924603789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-1c47cb3823f80a3625958c44a76de63f7e30d1ebdec2e28eb6ba2cbebc242a8d3</originalsourceid><addsrcrecordid>eNo9kVtP3DAQhS3UqmyhfwFZfepLqC9J7DxWy63SUhDQZ8t2JsSQtRfbWWn59bhd2qfRHH1nRjoHoRNKTikl_Ptm3KUI2wlyLkJ3SlhDCD1AC0pEVwlK6w9oQQinVUeIOESfU3oihWCt_IQOmRQN57xZoOdL8BB1dsFj7Xt8vg3T_HcLA75yj2N1re1Y_ZrXBiJe6QSxOotuCx5f60cP2b1Cj5dhmlwqrglSwvdjsM8JO4_zCMVjQnkQ4u4YfRz0lODL-zxCvy_OH5ZX1erm8ufyx6qyDWlyRW0trOGS8UESzVvWdI20da1F20PLBwGc9BRMD5YBk2Bao5k1YCyrmZY9P0Jf93dDyk4l6zLY0QbvwWZFedcIKQv0bQ9tYniZIWW1dsnCNGkPYU6KdqxuCReyK2i7R20MqaQ-qE10ax13ihL1pw11W9q4g-2qtFGETu3bKMaT9x-zWUP_3_Yvfv4GtGWKjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924603789</pqid></control><display><type>article</type><title>Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory</title><source>American Physical Society Journals</source><creator>Schaeffer, D B ; Fox, W ; Haberberger, D ; Fiksel, G ; Bhattacharjee, A ; Barnak, D H ; Hu, S X ; Germaschewski, K</creator><creatorcontrib>Schaeffer, D B ; Fox, W ; Haberberger, D ; Fiksel, G ; Bhattacharjee, A ; Barnak, D H ; Hu, S X ; Germaschewski, K ; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.119.025001</identifier><identifier>PMID: 28753335</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; electron acceleration ; expansion ; field ; plasma ; wave</subject><ispartof>Physical review letters, 2017-07, Vol.119 (2), p.025001-025001, Article 025001</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-1c47cb3823f80a3625958c44a76de63f7e30d1ebdec2e28eb6ba2cbebc242a8d3</citedby><cites>FETCH-LOGICAL-c505t-1c47cb3823f80a3625958c44a76de63f7e30d1ebdec2e28eb6ba2cbebc242a8d3</cites><orcidid>0000000164110178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28753335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1395788$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schaeffer, D B</creatorcontrib><creatorcontrib>Fox, W</creatorcontrib><creatorcontrib>Haberberger, D</creatorcontrib><creatorcontrib>Fiksel, G</creatorcontrib><creatorcontrib>Bhattacharjee, A</creatorcontrib><creatorcontrib>Barnak, D H</creatorcontrib><creatorcontrib>Hu, S X</creatorcontrib><creatorcontrib>Germaschewski, K</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>electron acceleration</subject><subject>expansion</subject><subject>field</subject><subject>plasma</subject><subject>wave</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kVtP3DAQhS3UqmyhfwFZfepLqC9J7DxWy63SUhDQZ8t2JsSQtRfbWWn59bhd2qfRHH1nRjoHoRNKTikl_Ptm3KUI2wlyLkJ3SlhDCD1AC0pEVwlK6w9oQQinVUeIOESfU3oihWCt_IQOmRQN57xZoOdL8BB1dsFj7Xt8vg3T_HcLA75yj2N1re1Y_ZrXBiJe6QSxOotuCx5f60cP2b1Cj5dhmlwqrglSwvdjsM8JO4_zCMVjQnkQ4u4YfRz0lODL-zxCvy_OH5ZX1erm8ufyx6qyDWlyRW0trOGS8UESzVvWdI20da1F20PLBwGc9BRMD5YBk2Bao5k1YCyrmZY9P0Jf93dDyk4l6zLY0QbvwWZFedcIKQv0bQ9tYniZIWW1dsnCNGkPYU6KdqxuCReyK2i7R20MqaQ-qE10ax13ihL1pw11W9q4g-2qtFGETu3bKMaT9x-zWUP_3_Yvfv4GtGWKjg</recordid><startdate>20170713</startdate><enddate>20170713</enddate><creator>Schaeffer, D B</creator><creator>Fox, W</creator><creator>Haberberger, D</creator><creator>Fiksel, G</creator><creator>Bhattacharjee, A</creator><creator>Barnak, D H</creator><creator>Hu, S X</creator><creator>Germaschewski, K</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000164110178</orcidid></search><sort><creationdate>20170713</creationdate><title>Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory</title><author>Schaeffer, D B ; Fox, W ; Haberberger, D ; Fiksel, G ; Bhattacharjee, A ; Barnak, D H ; Hu, S X ; Germaschewski, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-1c47cb3823f80a3625958c44a76de63f7e30d1ebdec2e28eb6ba2cbebc242a8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>electron acceleration</topic><topic>expansion</topic><topic>field</topic><topic>plasma</topic><topic>wave</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaeffer, D B</creatorcontrib><creatorcontrib>Fox, W</creatorcontrib><creatorcontrib>Haberberger, D</creatorcontrib><creatorcontrib>Fiksel, G</creatorcontrib><creatorcontrib>Bhattacharjee, A</creatorcontrib><creatorcontrib>Barnak, D H</creatorcontrib><creatorcontrib>Hu, S X</creatorcontrib><creatorcontrib>Germaschewski, K</creatorcontrib><creatorcontrib>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaeffer, D B</au><au>Fox, W</au><au>Haberberger, D</au><au>Fiksel, G</au><au>Bhattacharjee, A</au><au>Barnak, D H</au><au>Hu, S X</au><au>Germaschewski, K</au><aucorp>Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-07-13</date><risdate>2017</risdate><volume>119</volume><issue>2</issue><spage>025001</spage><epage>025001</epage><pages>025001-025001</pages><artnum>025001</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma. The results show that the shocks form on time scales as fast as one gyroperiod, aided by the efficient coupling of energy, and the generation of a magnetic barrier between the piston and ambient ions. The development of this experimental platform complements present remote sensing and spacecraft observations, and opens the way for controlled laboratory investigations of high-Mach number collisionless shocks, including the mechanisms and efficiency of particle acceleration.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>28753335</pmid><doi>10.1103/physrevlett.119.025001</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000164110178</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-07, Vol.119 (2), p.025001-025001, Article 025001
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1395788
source American Physical Society Journals
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
electron acceleration
expansion
field
plasma
wave
title Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20Evolution%20of%20High-Mach-Number%20Laser-Driven%20Magnetized%20Collisionless%20Shocks%20in%20the%20Laboratory&rft.jtitle=Physical%20review%20letters&rft.au=Schaeffer,%20D%20B&rft.aucorp=Princeton%20Plasma%20Physics%20Lab.%20(PPPL),%20Princeton,%20NJ%20(United%20States)&rft.date=2017-07-13&rft.volume=119&rft.issue=2&rft.spage=025001&rft.epage=025001&rft.pages=025001-025001&rft.artnum=025001&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.119.025001&rft_dat=%3Cproquest_osti_%3E1924603789%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924603789&rft_id=info:pmid/28753335&rfr_iscdi=true