Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature

We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g by alloying with Li to form B Li . However, experimental studies of the boron anode have been r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2017-08, Vol.9 (30), p.10757-10763
Hauptverfasser: Deng, Changjian, Lau, Miu Lun, Barkholtz, Heather M, Xu, Haiping, Parrish, Riley, Xu, Meiyue Olivia, Xu, Tao, Liu, Yuzi, Wang, Hao, Connell, Justin G, Smith, Kassiopeia A, Xiong, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10763
container_issue 30
container_start_page 10757
container_title Nanoscale
container_volume 9
creator Deng, Changjian
Lau, Miu Lun
Barkholtz, Heather M
Xu, Haiping
Parrish, Riley
Xu, Meiyue Olivia
Xu, Tao
Liu, Yuzi
Wang, Hao
Connell, Justin G
Smith, Kassiopeia A
Xiong, Hui
description We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g by alloying with Li to form B Li . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g at a current rate of 10 mA g between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li ) could be ascribed to a capacitive process and at lower potentials (
doi_str_mv 10.1039/c7nr03017g
format Article
fullrecord <record><control><sourceid>pubmed_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1395544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28715023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f6b6cf6ee91833d151b0c268f250db3ebbe793469a2172b6254a35aafbe7699f3</originalsourceid><addsrcrecordid>eNo90FFLwzAQB_AgipvTFz-ABB-FapJr0-ZxDJ3CUBB98aUk6cVV1mYk6YPf3s7p4OCOux_38CfkkrNbzkDd2bIPDBgvP4_IVLCcZQClOD7MMp-Qsxi_GJMKJJySiahKXjABU_Ix73zYrv0QqfHB97TX_dgbqiPV_Vi-QdrphKHVG-p8oJs2rduhy9oRG512FxxtosH7jibsthh0GgKekxOnNxEv_vqMvD_cvy0es9XL8mkxX2UWKpUyJ420TiIqXgE0vOCGWSErJwrWGEBjsFSQS6UFL4WRosg1FFq7cS-VcjAj1_u_Pqa2jrZNaNfW9z3aVHNQRZHnI7rZIxt8jAFdvQ1tp8N3zVm9S7FelM-vvykuR3y1x9vBdNgc6H9s8APKzG3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Deng, Changjian ; Lau, Miu Lun ; Barkholtz, Heather M ; Xu, Haiping ; Parrish, Riley ; Xu, Meiyue Olivia ; Xu, Tao ; Liu, Yuzi ; Wang, Hao ; Connell, Justin G ; Smith, Kassiopeia A ; Xiong, Hui</creator><creatorcontrib>Deng, Changjian ; Lau, Miu Lun ; Barkholtz, Heather M ; Xu, Haiping ; Parrish, Riley ; Xu, Meiyue Olivia ; Xu, Tao ; Liu, Yuzi ; Wang, Hao ; Connell, Justin G ; Smith, Kassiopeia A ; Xiong, Hui ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g by alloying with Li to form B Li . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g at a current rate of 10 mA g between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (&gt;∼0.2 V vs. Li/Li ) could be ascribed to a capacitive process and at lower potentials (&lt;∼0.2 V vs. Li/Li ) to diffusion-controlled alloying reactions. Solid state nuclear magnetic resonance (NMR) measurement further confirmed that the capacity is from electrochemical reactions between lithium ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c7nr03017g</identifier><identifier>PMID: 28715023</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>ENERGY STORAGE ; MATERIALS SCIENCE</subject><ispartof>Nanoscale, 2017-08, Vol.9 (30), p.10757-10763</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f6b6cf6ee91833d151b0c268f250db3ebbe793469a2172b6254a35aafbe7699f3</citedby><cites>FETCH-LOGICAL-c389t-f6b6cf6ee91833d151b0c268f250db3ebbe793469a2172b6254a35aafbe7699f3</cites><orcidid>0000-0003-3126-1476 ; 0000000331261476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28715023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1395544$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Changjian</creatorcontrib><creatorcontrib>Lau, Miu Lun</creatorcontrib><creatorcontrib>Barkholtz, Heather M</creatorcontrib><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Parrish, Riley</creatorcontrib><creatorcontrib>Xu, Meiyue Olivia</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Connell, Justin G</creatorcontrib><creatorcontrib>Smith, Kassiopeia A</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g by alloying with Li to form B Li . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g at a current rate of 10 mA g between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (&gt;∼0.2 V vs. Li/Li ) could be ascribed to a capacitive process and at lower potentials (&lt;∼0.2 V vs. Li/Li ) to diffusion-controlled alloying reactions. Solid state nuclear magnetic resonance (NMR) measurement further confirmed that the capacity is from electrochemical reactions between lithium ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.</description><subject>ENERGY STORAGE</subject><subject>MATERIALS SCIENCE</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo90FFLwzAQB_AgipvTFz-ABB-FapJr0-ZxDJ3CUBB98aUk6cVV1mYk6YPf3s7p4OCOux_38CfkkrNbzkDd2bIPDBgvP4_IVLCcZQClOD7MMp-Qsxi_GJMKJJySiahKXjABU_Ix73zYrv0QqfHB97TX_dgbqiPV_Vi-QdrphKHVG-p8oJs2rduhy9oRG512FxxtosH7jibsthh0GgKekxOnNxEv_vqMvD_cvy0es9XL8mkxX2UWKpUyJ420TiIqXgE0vOCGWSErJwrWGEBjsFSQS6UFL4WRosg1FFq7cS-VcjAj1_u_Pqa2jrZNaNfW9z3aVHNQRZHnI7rZIxt8jAFdvQ1tp8N3zVm9S7FelM-vvykuR3y1x9vBdNgc6H9s8APKzG3Q</recordid><startdate>20170814</startdate><enddate>20170814</enddate><creator>Deng, Changjian</creator><creator>Lau, Miu Lun</creator><creator>Barkholtz, Heather M</creator><creator>Xu, Haiping</creator><creator>Parrish, Riley</creator><creator>Xu, Meiyue Olivia</creator><creator>Xu, Tao</creator><creator>Liu, Yuzi</creator><creator>Wang, Hao</creator><creator>Connell, Justin G</creator><creator>Smith, Kassiopeia A</creator><creator>Xiong, Hui</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3126-1476</orcidid><orcidid>https://orcid.org/0000000331261476</orcidid></search><sort><creationdate>20170814</creationdate><title>Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature</title><author>Deng, Changjian ; Lau, Miu Lun ; Barkholtz, Heather M ; Xu, Haiping ; Parrish, Riley ; Xu, Meiyue Olivia ; Xu, Tao ; Liu, Yuzi ; Wang, Hao ; Connell, Justin G ; Smith, Kassiopeia A ; Xiong, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f6b6cf6ee91833d151b0c268f250db3ebbe793469a2172b6254a35aafbe7699f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ENERGY STORAGE</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Changjian</creatorcontrib><creatorcontrib>Lau, Miu Lun</creatorcontrib><creatorcontrib>Barkholtz, Heather M</creatorcontrib><creatorcontrib>Xu, Haiping</creatorcontrib><creatorcontrib>Parrish, Riley</creatorcontrib><creatorcontrib>Xu, Meiyue Olivia</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Liu, Yuzi</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Connell, Justin G</creatorcontrib><creatorcontrib>Smith, Kassiopeia A</creatorcontrib><creatorcontrib>Xiong, Hui</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Changjian</au><au>Lau, Miu Lun</au><au>Barkholtz, Heather M</au><au>Xu, Haiping</au><au>Parrish, Riley</au><au>Xu, Meiyue Olivia</au><au>Xu, Tao</au><au>Liu, Yuzi</au><au>Wang, Hao</au><au>Connell, Justin G</au><au>Smith, Kassiopeia A</au><au>Xiong, Hui</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2017-08-14</date><risdate>2017</risdate><volume>9</volume><issue>30</issue><spage>10757</spage><epage>10763</epage><pages>10757-10763</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g by alloying with Li to form B Li . However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g at a current rate of 10 mA g between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (&gt;∼0.2 V vs. Li/Li ) could be ascribed to a capacitive process and at lower potentials (&lt;∼0.2 V vs. Li/Li ) to diffusion-controlled alloying reactions. Solid state nuclear magnetic resonance (NMR) measurement further confirmed that the capacity is from electrochemical reactions between lithium ions and the amorphous boron nanorod. This work provides new insights into designing nanostructured boron materials for lithium-ion batteries.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>28715023</pmid><doi>10.1039/c7nr03017g</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3126-1476</orcidid><orcidid>https://orcid.org/0000000331261476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2017-08, Vol.9 (30), p.10757-10763
issn 2040-3364
2040-3372
language eng
recordid cdi_osti_scitechconnect_1395544
source Royal Society Of Chemistry Journals 2008-
subjects ENERGY STORAGE
MATERIALS SCIENCE
title Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphous%20boron%20nanorod%20as%20an%20anode%20material%20for%20lithium-ion%20batteries%20at%20room%20temperature&rft.jtitle=Nanoscale&rft.au=Deng,%20Changjian&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-08-14&rft.volume=9&rft.issue=30&rft.spage=10757&rft.epage=10763&rft.pages=10757-10763&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c7nr03017g&rft_dat=%3Cpubmed_osti_%3E28715023%3C/pubmed_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28715023&rfr_iscdi=true