Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-08, Vol.139 (33), p.11550-11558
Hauptverfasser: Zhao, Jie, Liao, Lei, Shi, Feifei, Lei, Ting, Chen, Guangxu, Pei, Allen, Sun, Jie, Yan, Kai, Zhou, Guangmin, Xie, Jin, Liu, Chong, Li, Yuzhang, Liang, Zheng, Bao, Zhenan, Cui, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11558
container_issue 33
container_start_page 11550
container_title Journal of the American Chemical Society
container_volume 139
creator Zhao, Jie
Liao, Lei
Shi, Feifei
Lei, Ting
Chen, Guangxu
Pei, Allen
Sun, Jie
Yan, Kai
Zhou, Guangmin
Xie, Jin
Liu, Chong
Li, Yuzhang
Liang, Zheng
Bao, Zhenan
Cui, Yi
description Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.
doi_str_mv 10.1021/jacs.7b05251
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1394068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116902655</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</originalsourceid><addsrcrecordid>eNptkE1rGzEQhkVpaZy0t56D6CmHrKPv1R6dkKSFhEDdnoWsHWGZtZRI2oD_fdbYbS49DS_zzDvwIPSNkjkljF5trCvzdkUkk_QDmlHJSCMpUx_RjBDCmlYrfoJOS9lMUTBNP6MTplvBqRYz9LQcs7cO8N0wphyirSFFnDz-BdbV8Ar42tYKeYcXMfWAH-0Ugh0K9inj27i20UGPl9WuwhDq7gv65KctfD3OM_Tn7vb3zY_m4en-583iobFC69rwrrMrB1zw3msBmitPVOeFbDlVRGhOFPVctqA1nzbK99RrqrV0ID3jkp-h74feVGowxYUKbu1SjOCqobwTROkJujhAzzm9jFCq2YbiYBhshDQWwyhVHWFK7vsuD6jLqZQM3jznsLV5Zygxe89m79kcPU_4-bF5XG2h_wf_Ffv-en-1SWOOk43_d70BGvyEQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116902655</pqid></control><display><type>article</type><title>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</title><source>ACS Publications</source><creator>Zhao, Jie ; Liao, Lei ; Shi, Feifei ; Lei, Ting ; Chen, Guangxu ; Pei, Allen ; Sun, Jie ; Yan, Kai ; Zhou, Guangmin ; Xie, Jin ; Liu, Chong ; Li, Yuzhang ; Liang, Zheng ; Bao, Zhenan ; Cui, Yi</creator><creatorcontrib>Zhao, Jie ; Liao, Lei ; Shi, Feifei ; Lei, Ting ; Chen, Guangxu ; Pei, Allen ; Sun, Jie ; Yan, Kai ; Zhou, Guangmin ; Xie, Jin ; Liu, Chong ; Li, Yuzhang ; Liang, Zheng ; Bao, Zhenan ; Cui, Yi ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b05251</identifier><identifier>PMID: 28743184</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>air ; anodes ; coatings ; corrosion ; electrolytes ; energy density ; ENERGY STORAGE ; fluorine ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; interphase ; lithium ; lithium batteries ; MATERIALS SCIENCE ; relative humidity ; silicon ; slurries ; solubility ; solvents ; toxicity</subject><ispartof>Journal of the American Chemical Society, 2017-08, Vol.139 (33), p.11550-11558</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</citedby><cites>FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</cites><orcidid>0000-0002-0972-1715 ; 0000-0002-6270-1465 ; 0000-0002-1502-7869 ; 0000-0001-6446-8313 ; 0000-0002-9171-6180 ; 0000-0001-8190-9483 ; 0000-0001-8930-2125 ; 0000000291716180 ; 0000000209721715 ; 0000000215027869 ; 0000000189302125 ; 0000000262701465 ; 0000000181909483 ; 0000000164468313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b05251$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b05251$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28743184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1394068$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Shi, Feifei</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Chen, Guangxu</creatorcontrib><creatorcontrib>Pei, Allen</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Li, Yuzhang</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.</description><subject>air</subject><subject>anodes</subject><subject>coatings</subject><subject>corrosion</subject><subject>electrolytes</subject><subject>energy density</subject><subject>ENERGY STORAGE</subject><subject>fluorine</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>interphase</subject><subject>lithium</subject><subject>lithium batteries</subject><subject>MATERIALS SCIENCE</subject><subject>relative humidity</subject><subject>silicon</subject><subject>slurries</subject><subject>solubility</subject><subject>solvents</subject><subject>toxicity</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1rGzEQhkVpaZy0t56D6CmHrKPv1R6dkKSFhEDdnoWsHWGZtZRI2oD_fdbYbS49DS_zzDvwIPSNkjkljF5trCvzdkUkk_QDmlHJSCMpUx_RjBDCmlYrfoJOS9lMUTBNP6MTplvBqRYz9LQcs7cO8N0wphyirSFFnDz-BdbV8Ar42tYKeYcXMfWAH-0Ugh0K9inj27i20UGPl9WuwhDq7gv65KctfD3OM_Tn7vb3zY_m4en-583iobFC69rwrrMrB1zw3msBmitPVOeFbDlVRGhOFPVctqA1nzbK99RrqrV0ID3jkp-h74feVGowxYUKbu1SjOCqobwTROkJujhAzzm9jFCq2YbiYBhshDQWwyhVHWFK7vsuD6jLqZQM3jznsLV5Zygxe89m79kcPU_4-bF5XG2h_wf_Ffv-en-1SWOOk43_d70BGvyEQw</recordid><startdate>20170823</startdate><enddate>20170823</enddate><creator>Zhao, Jie</creator><creator>Liao, Lei</creator><creator>Shi, Feifei</creator><creator>Lei, Ting</creator><creator>Chen, Guangxu</creator><creator>Pei, Allen</creator><creator>Sun, Jie</creator><creator>Yan, Kai</creator><creator>Zhou, Guangmin</creator><creator>Xie, Jin</creator><creator>Liu, Chong</creator><creator>Li, Yuzhang</creator><creator>Liang, Zheng</creator><creator>Bao, Zhenan</creator><creator>Cui, Yi</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-6270-1465</orcidid><orcidid>https://orcid.org/0000-0002-1502-7869</orcidid><orcidid>https://orcid.org/0000-0001-6446-8313</orcidid><orcidid>https://orcid.org/0000-0002-9171-6180</orcidid><orcidid>https://orcid.org/0000-0001-8190-9483</orcidid><orcidid>https://orcid.org/0000-0001-8930-2125</orcidid><orcidid>https://orcid.org/0000000291716180</orcidid><orcidid>https://orcid.org/0000000209721715</orcidid><orcidid>https://orcid.org/0000000215027869</orcidid><orcidid>https://orcid.org/0000000189302125</orcidid><orcidid>https://orcid.org/0000000262701465</orcidid><orcidid>https://orcid.org/0000000181909483</orcidid><orcidid>https://orcid.org/0000000164468313</orcidid></search><sort><creationdate>20170823</creationdate><title>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</title><author>Zhao, Jie ; Liao, Lei ; Shi, Feifei ; Lei, Ting ; Chen, Guangxu ; Pei, Allen ; Sun, Jie ; Yan, Kai ; Zhou, Guangmin ; Xie, Jin ; Liu, Chong ; Li, Yuzhang ; Liang, Zheng ; Bao, Zhenan ; Cui, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>air</topic><topic>anodes</topic><topic>coatings</topic><topic>corrosion</topic><topic>electrolytes</topic><topic>energy density</topic><topic>ENERGY STORAGE</topic><topic>fluorine</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>interphase</topic><topic>lithium</topic><topic>lithium batteries</topic><topic>MATERIALS SCIENCE</topic><topic>relative humidity</topic><topic>silicon</topic><topic>slurries</topic><topic>solubility</topic><topic>solvents</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Shi, Feifei</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Chen, Guangxu</creatorcontrib><creatorcontrib>Pei, Allen</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Li, Yuzhang</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jie</au><au>Liao, Lei</au><au>Shi, Feifei</au><au>Lei, Ting</au><au>Chen, Guangxu</au><au>Pei, Allen</au><au>Sun, Jie</au><au>Yan, Kai</au><au>Zhou, Guangmin</au><au>Xie, Jin</au><au>Liu, Chong</au><au>Li, Yuzhang</au><au>Liang, Zheng</au><au>Bao, Zhenan</au><au>Cui, Yi</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-08-23</date><risdate>2017</risdate><volume>139</volume><issue>33</issue><spage>11550</spage><epage>11558</epage><pages>11550-11558</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28743184</pmid><doi>10.1021/jacs.7b05251</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-6270-1465</orcidid><orcidid>https://orcid.org/0000-0002-1502-7869</orcidid><orcidid>https://orcid.org/0000-0001-6446-8313</orcidid><orcidid>https://orcid.org/0000-0002-9171-6180</orcidid><orcidid>https://orcid.org/0000-0001-8190-9483</orcidid><orcidid>https://orcid.org/0000-0001-8930-2125</orcidid><orcidid>https://orcid.org/0000000291716180</orcidid><orcidid>https://orcid.org/0000000209721715</orcidid><orcidid>https://orcid.org/0000000215027869</orcidid><orcidid>https://orcid.org/0000000189302125</orcidid><orcidid>https://orcid.org/0000000262701465</orcidid><orcidid>https://orcid.org/0000000181909483</orcidid><orcidid>https://orcid.org/0000000164468313</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-08, Vol.139 (33), p.11550-11558
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_osti_scitechconnect_1394068
source ACS Publications
subjects air
anodes
coatings
corrosion
electrolytes
energy density
ENERGY STORAGE
fluorine
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
interphase
lithium
lithium batteries
MATERIALS SCIENCE
relative humidity
silicon
slurries
solubility
solvents
toxicity
title Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T03%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Fluorination%20of%20Reactive%20Battery%20Anode%20Materials%20for%20Enhanced%20Stability&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhao,%20Jie&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-08-23&rft.volume=139&rft.issue=33&rft.spage=11550&rft.epage=11558&rft.pages=11550-11558&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b05251&rft_dat=%3Cproquest_osti_%3E2116902655%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116902655&rft_id=info:pmid/28743184&rfr_iscdi=true