Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the s...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-08, Vol.139 (33), p.11550-11558 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11558 |
---|---|
container_issue | 33 |
container_start_page | 11550 |
container_title | Journal of the American Chemical Society |
container_volume | 139 |
creator | Zhao, Jie Liao, Lei Shi, Feifei Lei, Ting Chen, Guangxu Pei, Allen Sun, Jie Yan, Kai Zhou, Guangmin Xie, Jin Liu, Chong Li, Yuzhang Liang, Zheng Bao, Zhenan Cui, Yi |
description | Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries. |
doi_str_mv | 10.1021/jacs.7b05251 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1394068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2116902655</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</originalsourceid><addsrcrecordid>eNptkE1rGzEQhkVpaZy0t56D6CmHrKPv1R6dkKSFhEDdnoWsHWGZtZRI2oD_fdbYbS49DS_zzDvwIPSNkjkljF5trCvzdkUkk_QDmlHJSCMpUx_RjBDCmlYrfoJOS9lMUTBNP6MTplvBqRYz9LQcs7cO8N0wphyirSFFnDz-BdbV8Ar42tYKeYcXMfWAH-0Ugh0K9inj27i20UGPl9WuwhDq7gv65KctfD3OM_Tn7vb3zY_m4en-583iobFC69rwrrMrB1zw3msBmitPVOeFbDlVRGhOFPVctqA1nzbK99RrqrV0ID3jkp-h74feVGowxYUKbu1SjOCqobwTROkJujhAzzm9jFCq2YbiYBhshDQWwyhVHWFK7vsuD6jLqZQM3jznsLV5Zygxe89m79kcPU_4-bF5XG2h_wf_Ffv-en-1SWOOk43_d70BGvyEQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2116902655</pqid></control><display><type>article</type><title>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</title><source>ACS Publications</source><creator>Zhao, Jie ; Liao, Lei ; Shi, Feifei ; Lei, Ting ; Chen, Guangxu ; Pei, Allen ; Sun, Jie ; Yan, Kai ; Zhou, Guangmin ; Xie, Jin ; Liu, Chong ; Li, Yuzhang ; Liang, Zheng ; Bao, Zhenan ; Cui, Yi</creator><creatorcontrib>Zhao, Jie ; Liao, Lei ; Shi, Feifei ; Lei, Ting ; Chen, Guangxu ; Pei, Allen ; Sun, Jie ; Yan, Kai ; Zhou, Guangmin ; Xie, Jin ; Liu, Chong ; Li, Yuzhang ; Liang, Zheng ; Bao, Zhenan ; Cui, Yi ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b05251</identifier><identifier>PMID: 28743184</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>air ; anodes ; coatings ; corrosion ; electrolytes ; energy density ; ENERGY STORAGE ; fluorine ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; interphase ; lithium ; lithium batteries ; MATERIALS SCIENCE ; relative humidity ; silicon ; slurries ; solubility ; solvents ; toxicity</subject><ispartof>Journal of the American Chemical Society, 2017-08, Vol.139 (33), p.11550-11558</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</citedby><cites>FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</cites><orcidid>0000-0002-0972-1715 ; 0000-0002-6270-1465 ; 0000-0002-1502-7869 ; 0000-0001-6446-8313 ; 0000-0002-9171-6180 ; 0000-0001-8190-9483 ; 0000-0001-8930-2125 ; 0000000291716180 ; 0000000209721715 ; 0000000215027869 ; 0000000189302125 ; 0000000262701465 ; 0000000181909483 ; 0000000164468313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b05251$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b05251$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28743184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1394068$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Shi, Feifei</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Chen, Guangxu</creatorcontrib><creatorcontrib>Pei, Allen</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Li, Yuzhang</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.</description><subject>air</subject><subject>anodes</subject><subject>coatings</subject><subject>corrosion</subject><subject>electrolytes</subject><subject>energy density</subject><subject>ENERGY STORAGE</subject><subject>fluorine</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>interphase</subject><subject>lithium</subject><subject>lithium batteries</subject><subject>MATERIALS SCIENCE</subject><subject>relative humidity</subject><subject>silicon</subject><subject>slurries</subject><subject>solubility</subject><subject>solvents</subject><subject>toxicity</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1rGzEQhkVpaZy0t56D6CmHrKPv1R6dkKSFhEDdnoWsHWGZtZRI2oD_fdbYbS49DS_zzDvwIPSNkjkljF5trCvzdkUkk_QDmlHJSCMpUx_RjBDCmlYrfoJOS9lMUTBNP6MTplvBqRYz9LQcs7cO8N0wphyirSFFnDz-BdbV8Ar42tYKeYcXMfWAH-0Ugh0K9inj27i20UGPl9WuwhDq7gv65KctfD3OM_Tn7vb3zY_m4en-583iobFC69rwrrMrB1zw3msBmitPVOeFbDlVRGhOFPVctqA1nzbK99RrqrV0ID3jkp-h74feVGowxYUKbu1SjOCqobwTROkJujhAzzm9jFCq2YbiYBhshDQWwyhVHWFK7vsuD6jLqZQM3jznsLV5Zygxe89m79kcPU_4-bF5XG2h_wf_Ffv-en-1SWOOk43_d70BGvyEQw</recordid><startdate>20170823</startdate><enddate>20170823</enddate><creator>Zhao, Jie</creator><creator>Liao, Lei</creator><creator>Shi, Feifei</creator><creator>Lei, Ting</creator><creator>Chen, Guangxu</creator><creator>Pei, Allen</creator><creator>Sun, Jie</creator><creator>Yan, Kai</creator><creator>Zhou, Guangmin</creator><creator>Xie, Jin</creator><creator>Liu, Chong</creator><creator>Li, Yuzhang</creator><creator>Liang, Zheng</creator><creator>Bao, Zhenan</creator><creator>Cui, Yi</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-6270-1465</orcidid><orcidid>https://orcid.org/0000-0002-1502-7869</orcidid><orcidid>https://orcid.org/0000-0001-6446-8313</orcidid><orcidid>https://orcid.org/0000-0002-9171-6180</orcidid><orcidid>https://orcid.org/0000-0001-8190-9483</orcidid><orcidid>https://orcid.org/0000-0001-8930-2125</orcidid><orcidid>https://orcid.org/0000000291716180</orcidid><orcidid>https://orcid.org/0000000209721715</orcidid><orcidid>https://orcid.org/0000000215027869</orcidid><orcidid>https://orcid.org/0000000189302125</orcidid><orcidid>https://orcid.org/0000000262701465</orcidid><orcidid>https://orcid.org/0000000181909483</orcidid><orcidid>https://orcid.org/0000000164468313</orcidid></search><sort><creationdate>20170823</creationdate><title>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</title><author>Zhao, Jie ; Liao, Lei ; Shi, Feifei ; Lei, Ting ; Chen, Guangxu ; Pei, Allen ; Sun, Jie ; Yan, Kai ; Zhou, Guangmin ; Xie, Jin ; Liu, Chong ; Li, Yuzhang ; Liang, Zheng ; Bao, Zhenan ; Cui, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-399abce343df84e836f069f4573160483061f357e883f066fd1f81885ce5f2353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>air</topic><topic>anodes</topic><topic>coatings</topic><topic>corrosion</topic><topic>electrolytes</topic><topic>energy density</topic><topic>ENERGY STORAGE</topic><topic>fluorine</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>interphase</topic><topic>lithium</topic><topic>lithium batteries</topic><topic>MATERIALS SCIENCE</topic><topic>relative humidity</topic><topic>silicon</topic><topic>slurries</topic><topic>solubility</topic><topic>solvents</topic><topic>toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jie</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Shi, Feifei</creatorcontrib><creatorcontrib>Lei, Ting</creatorcontrib><creatorcontrib>Chen, Guangxu</creatorcontrib><creatorcontrib>Pei, Allen</creatorcontrib><creatorcontrib>Sun, Jie</creatorcontrib><creatorcontrib>Yan, Kai</creatorcontrib><creatorcontrib>Zhou, Guangmin</creatorcontrib><creatorcontrib>Xie, Jin</creatorcontrib><creatorcontrib>Liu, Chong</creatorcontrib><creatorcontrib>Li, Yuzhang</creatorcontrib><creatorcontrib>Liang, Zheng</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jie</au><au>Liao, Lei</au><au>Shi, Feifei</au><au>Lei, Ting</au><au>Chen, Guangxu</au><au>Pei, Allen</au><au>Sun, Jie</au><au>Yan, Kai</au><au>Zhou, Guangmin</au><au>Xie, Jin</au><au>Liu, Chong</au><au>Li, Yuzhang</au><au>Liang, Zheng</au><au>Bao, Zhenan</au><au>Cui, Yi</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-08-23</date><risdate>2017</risdate><volume>139</volume><issue>33</issue><spage>11550</spage><epage>11558</epage><pages>11550-11558</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. For lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li x Si can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li x Si to be stable in humid air (∼40% relative humidity). Therefore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28743184</pmid><doi>10.1021/jacs.7b05251</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0972-1715</orcidid><orcidid>https://orcid.org/0000-0002-6270-1465</orcidid><orcidid>https://orcid.org/0000-0002-1502-7869</orcidid><orcidid>https://orcid.org/0000-0001-6446-8313</orcidid><orcidid>https://orcid.org/0000-0002-9171-6180</orcidid><orcidid>https://orcid.org/0000-0001-8190-9483</orcidid><orcidid>https://orcid.org/0000-0001-8930-2125</orcidid><orcidid>https://orcid.org/0000000291716180</orcidid><orcidid>https://orcid.org/0000000209721715</orcidid><orcidid>https://orcid.org/0000000215027869</orcidid><orcidid>https://orcid.org/0000000189302125</orcidid><orcidid>https://orcid.org/0000000262701465</orcidid><orcidid>https://orcid.org/0000000181909483</orcidid><orcidid>https://orcid.org/0000000164468313</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2017-08, Vol.139 (33), p.11550-11558 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1394068 |
source | ACS Publications |
subjects | air anodes coatings corrosion electrolytes energy density ENERGY STORAGE fluorine INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY interphase lithium lithium batteries MATERIALS SCIENCE relative humidity silicon slurries solubility solvents toxicity |
title | Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T03%3A43%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Fluorination%20of%20Reactive%20Battery%20Anode%20Materials%20for%20Enhanced%20Stability&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhao,%20Jie&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-08-23&rft.volume=139&rft.issue=33&rft.spage=11550&rft.epage=11558&rft.pages=11550-11558&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b05251&rft_dat=%3Cproquest_osti_%3E2116902655%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2116902655&rft_id=info:pmid/28743184&rfr_iscdi=true |