Three‐dimensional mapping of crystalline ceramic waste form materials
This work demonstrates the use of synchrotron‐based, transmission X‐ray microscopy (TXM) and scanning electron microscopy to image the 3‐D morphologies and spatial distributions of Ga‐doped phases within model, single‐ and two‐phase waste form material systems. Gallium doping levels consistent with...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2017-08, Vol.100 (8), p.3722-3735 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3735 |
---|---|
container_issue | 8 |
container_start_page | 3722 |
container_title | Journal of the American Ceramic Society |
container_volume | 100 |
creator | Cocco, Alex P. DeGostin, Matthew B. Wrubel, Jacob A. Damian, Peter J. Hong, Tao Xu, Yun Liu, Yijin Pianetta, Piero Amoroso, Jake W. Brinkman, Kyle S. Chiu, Wilson K. S. |
description | This work demonstrates the use of synchrotron‐based, transmission X‐ray microscopy (TXM) and scanning electron microscopy to image the 3‐D morphologies and spatial distributions of Ga‐doped phases within model, single‐ and two‐phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba1.04Cs0.24Ga2.32Ti5.68O16) could be readily imaged. The analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid‐state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. The results presented in this work represent a crucial step in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials. |
doi_str_mv | 10.1111/jace.14885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1394065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925508329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4035-70f7a63e7d7ce9584e99cfcfa84d0aab62d6ed1df026f58800e1ef5f66f7774e3</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqxSdY9CZsTXY3X8dSalUKXuo5xOzEpuxuarKl9OYj-Iw-ianr2bkMA78ZmD9C1wRPSKr7jTYwIZUQ9ASNCKUkLyRhp2iEMS5yLgp8ji5i3KSRSFGN0GK1DgDfn1-1a6GLzne6yVq93bruPfM2M-EQe900roPMQNCtM9lexx4y60ObZA_B6SZeojObGlz99TF6fZivZo_58mXxNJsuc1PhkuYcW65ZCbzmBiQVFUhprLFaVDXW-o0VNYOa1BYXzFIhMAYCllrGLOe8gnKMboa7PvZOReN6MGvjuw5Mr0gpK8xoQrcD2gb_sYPYq43fhfRZVEQWlGJRFjKpu0GZ4GMMYNU2uFaHgyJYHdNUxzTVb5oJkwHvXQOHf6R6ns7mw84PqNB4Vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925508329</pqid></control><display><type>article</type><title>Three‐dimensional mapping of crystalline ceramic waste form materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cocco, Alex P. ; DeGostin, Matthew B. ; Wrubel, Jacob A. ; Damian, Peter J. ; Hong, Tao ; Xu, Yun ; Liu, Yijin ; Pianetta, Piero ; Amoroso, Jake W. ; Brinkman, Kyle S. ; Chiu, Wilson K. S.</creator><creatorcontrib>Cocco, Alex P. ; DeGostin, Matthew B. ; Wrubel, Jacob A. ; Damian, Peter J. ; Hong, Tao ; Xu, Yun ; Liu, Yijin ; Pianetta, Piero ; Amoroso, Jake W. ; Brinkman, Kyle S. ; Chiu, Wilson K. S. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>This work demonstrates the use of synchrotron‐based, transmission X‐ray microscopy (TXM) and scanning electron microscopy to image the 3‐D morphologies and spatial distributions of Ga‐doped phases within model, single‐ and two‐phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba1.04Cs0.24Ga2.32Ti5.68O16) could be readily imaged. The analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid‐state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. The results presented in this work represent a crucial step in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14885</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Ceramics ; Chemical properties ; Corrosion resistance ; Crystal structure ; Gallium ; MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES ; nuclear waste ; processing ; Radioactive wastes ; Scanning electron microscopy ; synchrotron ; Three dimensional models ; transmission X‐ray microscopy ; X ray microscopy ; X‐ray computed tomography</subject><ispartof>Journal of the American Ceramic Society, 2017-08, Vol.100 (8), p.3722-3735</ispartof><rights>2017 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4035-70f7a63e7d7ce9584e99cfcfa84d0aab62d6ed1df026f58800e1ef5f66f7774e3</citedby><cites>FETCH-LOGICAL-c4035-70f7a63e7d7ce9584e99cfcfa84d0aab62d6ed1df026f58800e1ef5f66f7774e3</cites><orcidid>0000-0001-7402-4951 ; 0000000174024951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14885$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14885$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1394065$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cocco, Alex P.</creatorcontrib><creatorcontrib>DeGostin, Matthew B.</creatorcontrib><creatorcontrib>Wrubel, Jacob A.</creatorcontrib><creatorcontrib>Damian, Peter J.</creatorcontrib><creatorcontrib>Hong, Tao</creatorcontrib><creatorcontrib>Xu, Yun</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Pianetta, Piero</creatorcontrib><creatorcontrib>Amoroso, Jake W.</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Chiu, Wilson K. S.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Three‐dimensional mapping of crystalline ceramic waste form materials</title><title>Journal of the American Ceramic Society</title><description>This work demonstrates the use of synchrotron‐based, transmission X‐ray microscopy (TXM) and scanning electron microscopy to image the 3‐D morphologies and spatial distributions of Ga‐doped phases within model, single‐ and two‐phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba1.04Cs0.24Ga2.32Ti5.68O16) could be readily imaged. The analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid‐state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. The results presented in this work represent a crucial step in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.</description><subject>Ceramics</subject><subject>Chemical properties</subject><subject>Corrosion resistance</subject><subject>Crystal structure</subject><subject>Gallium</subject><subject>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</subject><subject>nuclear waste</subject><subject>processing</subject><subject>Radioactive wastes</subject><subject>Scanning electron microscopy</subject><subject>synchrotron</subject><subject>Three dimensional models</subject><subject>transmission X‐ray microscopy</subject><subject>X ray microscopy</subject><subject>X‐ray computed tomography</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqxSdY9CZsTXY3X8dSalUKXuo5xOzEpuxuarKl9OYj-Iw-ianr2bkMA78ZmD9C1wRPSKr7jTYwIZUQ9ASNCKUkLyRhp2iEMS5yLgp8ji5i3KSRSFGN0GK1DgDfn1-1a6GLzne6yVq93bruPfM2M-EQe900roPMQNCtM9lexx4y60ObZA_B6SZeojObGlz99TF6fZivZo_58mXxNJsuc1PhkuYcW65ZCbzmBiQVFUhprLFaVDXW-o0VNYOa1BYXzFIhMAYCllrGLOe8gnKMboa7PvZOReN6MGvjuw5Mr0gpK8xoQrcD2gb_sYPYq43fhfRZVEQWlGJRFjKpu0GZ4GMMYNU2uFaHgyJYHdNUxzTVb5oJkwHvXQOHf6R6ns7mw84PqNB4Vg</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Cocco, Alex P.</creator><creator>DeGostin, Matthew B.</creator><creator>Wrubel, Jacob A.</creator><creator>Damian, Peter J.</creator><creator>Hong, Tao</creator><creator>Xu, Yun</creator><creator>Liu, Yijin</creator><creator>Pianetta, Piero</creator><creator>Amoroso, Jake W.</creator><creator>Brinkman, Kyle S.</creator><creator>Chiu, Wilson K. S.</creator><general>Wiley Subscription Services, Inc</general><general>American Ceramic Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7402-4951</orcidid><orcidid>https://orcid.org/0000000174024951</orcidid></search><sort><creationdate>201708</creationdate><title>Three‐dimensional mapping of crystalline ceramic waste form materials</title><author>Cocco, Alex P. ; DeGostin, Matthew B. ; Wrubel, Jacob A. ; Damian, Peter J. ; Hong, Tao ; Xu, Yun ; Liu, Yijin ; Pianetta, Piero ; Amoroso, Jake W. ; Brinkman, Kyle S. ; Chiu, Wilson K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4035-70f7a63e7d7ce9584e99cfcfa84d0aab62d6ed1df026f58800e1ef5f66f7774e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ceramics</topic><topic>Chemical properties</topic><topic>Corrosion resistance</topic><topic>Crystal structure</topic><topic>Gallium</topic><topic>MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES</topic><topic>nuclear waste</topic><topic>processing</topic><topic>Radioactive wastes</topic><topic>Scanning electron microscopy</topic><topic>synchrotron</topic><topic>Three dimensional models</topic><topic>transmission X‐ray microscopy</topic><topic>X ray microscopy</topic><topic>X‐ray computed tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cocco, Alex P.</creatorcontrib><creatorcontrib>DeGostin, Matthew B.</creatorcontrib><creatorcontrib>Wrubel, Jacob A.</creatorcontrib><creatorcontrib>Damian, Peter J.</creatorcontrib><creatorcontrib>Hong, Tao</creatorcontrib><creatorcontrib>Xu, Yun</creatorcontrib><creatorcontrib>Liu, Yijin</creatorcontrib><creatorcontrib>Pianetta, Piero</creatorcontrib><creatorcontrib>Amoroso, Jake W.</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Chiu, Wilson K. S.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cocco, Alex P.</au><au>DeGostin, Matthew B.</au><au>Wrubel, Jacob A.</au><au>Damian, Peter J.</au><au>Hong, Tao</au><au>Xu, Yun</au><au>Liu, Yijin</au><au>Pianetta, Piero</au><au>Amoroso, Jake W.</au><au>Brinkman, Kyle S.</au><au>Chiu, Wilson K. S.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐dimensional mapping of crystalline ceramic waste form materials</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-08</date><risdate>2017</risdate><volume>100</volume><issue>8</issue><spage>3722</spage><epage>3735</epage><pages>3722-3735</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>This work demonstrates the use of synchrotron‐based, transmission X‐ray microscopy (TXM) and scanning electron microscopy to image the 3‐D morphologies and spatial distributions of Ga‐doped phases within model, single‐ and two‐phase waste form material systems. Gallium doping levels consistent with those commonly used for nuclear waste immobilization (e.g., Ba1.04Cs0.24Ga2.32Ti5.68O16) could be readily imaged. The analysis suggests that a minority phase with different stoichiometry/composition from the primary hollandite phase can be formed by the solid‐state ceramic processing route with varying morphology (globular vs. cylindrical) as a function of Cs content. The results presented in this work represent a crucial step in developing the tools necessary to gain an improved understanding of the microstructural and chemical properties of waste form materials that influence their resistance to aqueous corrosion. This understanding will aid in the future design of higher durability waste form materials.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.14885</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7402-4951</orcidid><orcidid>https://orcid.org/0000000174024951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2017-08, Vol.100 (8), p.3722-3735 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_osti_scitechconnect_1394065 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ceramics Chemical properties Corrosion resistance Crystal structure Gallium MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES nuclear waste processing Radioactive wastes Scanning electron microscopy synchrotron Three dimensional models transmission X‐ray microscopy X ray microscopy X‐ray computed tomography |
title | Three‐dimensional mapping of crystalline ceramic waste form materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90dimensional%20mapping%20of%20crystalline%20ceramic%20waste%20form%20materials&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Cocco,%20Alex%20P.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-08&rft.volume=100&rft.issue=8&rft.spage=3722&rft.epage=3735&rft.pages=3722-3735&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.14885&rft_dat=%3Cproquest_osti_%3E1925508329%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925508329&rft_id=info:pmid/&rfr_iscdi=true |