Interfacial Tension of Polyelectrolyte Complex Coacervate Phases

We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but lit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS macro letters 2014-06, Vol.3 (6), p.565-568
Hauptverfasser: Qin, Jian, Priftis, Dimitrios, Farina, Robert, Perry, Sarah L, Leon, Lorraine, Whitmer, Jonathan, Hoffmann, Kyle, Tirrell, Matthew, de Pablo, Juan J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 568
container_issue 6
container_start_page 565
container_title ACS macro letters
container_volume 3
creator Qin, Jian
Priftis, Dimitrios
Farina, Robert
Perry, Sarah L
Leon, Lorraine
Whitmer, Jonathan
Hoffmann, Kyle
Tirrell, Matthew
de Pablo, Juan J
description We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.
doi_str_mv 10.1021/mz500190w
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1393976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667795262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoTuYu_ANSBEEvqknTpM2dMvwYDNzFvA5pesI62mYmrTp_vZHO4YXn5j0cHl4OD0JnBN8QnJDb5othTAT-OEAnCeEkJpzRwz_7CE28X-MwjJNcpMdoRBkTOEvyE3Q3aztwRulK1dESWl_ZNrImWth6CzXozoWlg2hqm00NnyGVBveuwmmxUh78KToyqvYw2eUYvT4-LKfP8fzlaTa9n8cqxXkXgwFKqcqLVIDikGNSlEqXKsdYE6oMScqS8YKrDGccwGBWcmoEScEURYFTOkYXQ6_1XSW9rjrQK23bNvwoCRVUZDxAVwO0cfatB9_JpvIa6lq1YHsvE86zTLCEJwG9HlDtrPcOjNy4qlFuKwmWP2LlXmxgz3e1fdFAuSd_NQbgcgCU9nJte9cGFf8UfQNWc38r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667795262</pqid></control><display><type>article</type><title>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</title><source>ACS Publications</source><creator>Qin, Jian ; Priftis, Dimitrios ; Farina, Robert ; Perry, Sarah L ; Leon, Lorraine ; Whitmer, Jonathan ; Hoffmann, Kyle ; Tirrell, Matthew ; de Pablo, Juan J</creator><creatorcontrib>Qin, Jian ; Priftis, Dimitrios ; Farina, Robert ; Perry, Sarah L ; Leon, Lorraine ; Whitmer, Jonathan ; Hoffmann, Kyle ; Tirrell, Matthew ; de Pablo, Juan J ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/mz500190w</identifier><identifier>PMID: 35590728</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>ACS macro letters, 2014-06, Vol.3 (6), p.565-568</ispartof><rights>Copyright © 2014 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</citedby><cites>FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/mz500190w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/mz500190w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35590728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1393976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Jian</creatorcontrib><creatorcontrib>Priftis, Dimitrios</creatorcontrib><creatorcontrib>Farina, Robert</creatorcontrib><creatorcontrib>Perry, Sarah L</creatorcontrib><creatorcontrib>Leon, Lorraine</creatorcontrib><creatorcontrib>Whitmer, Jonathan</creatorcontrib><creatorcontrib>Hoffmann, Kyle</creatorcontrib><creatorcontrib>Tirrell, Matthew</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkF1LwzAUhoMoTuYu_ANSBEEvqknTpM2dMvwYDNzFvA5pesI62mYmrTp_vZHO4YXn5j0cHl4OD0JnBN8QnJDb5othTAT-OEAnCeEkJpzRwz_7CE28X-MwjJNcpMdoRBkTOEvyE3Q3aztwRulK1dESWl_ZNrImWth6CzXozoWlg2hqm00NnyGVBveuwmmxUh78KToyqvYw2eUYvT4-LKfP8fzlaTa9n8cqxXkXgwFKqcqLVIDikGNSlEqXKsdYE6oMScqS8YKrDGccwGBWcmoEScEURYFTOkYXQ6_1XSW9rjrQK23bNvwoCRVUZDxAVwO0cfatB9_JpvIa6lq1YHsvE86zTLCEJwG9HlDtrPcOjNy4qlFuKwmWP2LlXmxgz3e1fdFAuSd_NQbgcgCU9nJte9cGFf8UfQNWc38r</recordid><startdate>20140617</startdate><enddate>20140617</enddate><creator>Qin, Jian</creator><creator>Priftis, Dimitrios</creator><creator>Farina, Robert</creator><creator>Perry, Sarah L</creator><creator>Leon, Lorraine</creator><creator>Whitmer, Jonathan</creator><creator>Hoffmann, Kyle</creator><creator>Tirrell, Matthew</creator><creator>de Pablo, Juan J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140617</creationdate><title>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</title><author>Qin, Jian ; Priftis, Dimitrios ; Farina, Robert ; Perry, Sarah L ; Leon, Lorraine ; Whitmer, Jonathan ; Hoffmann, Kyle ; Tirrell, Matthew ; de Pablo, Juan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jian</creatorcontrib><creatorcontrib>Priftis, Dimitrios</creatorcontrib><creatorcontrib>Farina, Robert</creatorcontrib><creatorcontrib>Perry, Sarah L</creatorcontrib><creatorcontrib>Leon, Lorraine</creatorcontrib><creatorcontrib>Whitmer, Jonathan</creatorcontrib><creatorcontrib>Hoffmann, Kyle</creatorcontrib><creatorcontrib>Tirrell, Matthew</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jian</au><au>Priftis, Dimitrios</au><au>Farina, Robert</au><au>Perry, Sarah L</au><au>Leon, Lorraine</au><au>Whitmer, Jonathan</au><au>Hoffmann, Kyle</au><au>Tirrell, Matthew</au><au>de Pablo, Juan J</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2014-06-17</date><risdate>2014</risdate><volume>3</volume><issue>6</issue><spage>565</spage><epage>568</epage><pages>565-568</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35590728</pmid><doi>10.1021/mz500190w</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2161-1653
ispartof ACS macro letters, 2014-06, Vol.3 (6), p.565-568
issn 2161-1653
2161-1653
language eng
recordid cdi_osti_scitechconnect_1393976
source ACS Publications
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Interfacial Tension of Polyelectrolyte Complex Coacervate Phases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Tension%20of%20Polyelectrolyte%20Complex%20Coacervate%20Phases&rft.jtitle=ACS%20macro%20letters&rft.au=Qin,%20Jian&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2014-06-17&rft.volume=3&rft.issue=6&rft.spage=565&rft.epage=568&rft.pages=565-568&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/mz500190w&rft_dat=%3Cproquest_osti_%3E2667795262%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667795262&rft_id=info:pmid/35590728&rfr_iscdi=true