Interfacial Tension of Polyelectrolyte Complex Coacervate Phases
We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but lit...
Gespeichert in:
Veröffentlicht in: | ACS macro letters 2014-06, Vol.3 (6), p.565-568 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 568 |
---|---|
container_issue | 6 |
container_start_page | 565 |
container_title | ACS macro letters |
container_volume | 3 |
creator | Qin, Jian Priftis, Dimitrios Farina, Robert Perry, Sarah L Leon, Lorraine Whitmer, Jonathan Hoffmann, Kyle Tirrell, Matthew de Pablo, Juan J |
description | We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation. |
doi_str_mv | 10.1021/mz500190w |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1393976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2667795262</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMoTuYu_ANSBEEvqknTpM2dMvwYDNzFvA5pesI62mYmrTp_vZHO4YXn5j0cHl4OD0JnBN8QnJDb5othTAT-OEAnCeEkJpzRwz_7CE28X-MwjJNcpMdoRBkTOEvyE3Q3aztwRulK1dESWl_ZNrImWth6CzXozoWlg2hqm00NnyGVBveuwmmxUh78KToyqvYw2eUYvT4-LKfP8fzlaTa9n8cqxXkXgwFKqcqLVIDikGNSlEqXKsdYE6oMScqS8YKrDGccwGBWcmoEScEURYFTOkYXQ6_1XSW9rjrQK23bNvwoCRVUZDxAVwO0cfatB9_JpvIa6lq1YHsvE86zTLCEJwG9HlDtrPcOjNy4qlFuKwmWP2LlXmxgz3e1fdFAuSd_NQbgcgCU9nJte9cGFf8UfQNWc38r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2667795262</pqid></control><display><type>article</type><title>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</title><source>ACS Publications</source><creator>Qin, Jian ; Priftis, Dimitrios ; Farina, Robert ; Perry, Sarah L ; Leon, Lorraine ; Whitmer, Jonathan ; Hoffmann, Kyle ; Tirrell, Matthew ; de Pablo, Juan J</creator><creatorcontrib>Qin, Jian ; Priftis, Dimitrios ; Farina, Robert ; Perry, Sarah L ; Leon, Lorraine ; Whitmer, Jonathan ; Hoffmann, Kyle ; Tirrell, Matthew ; de Pablo, Juan J ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/mz500190w</identifier><identifier>PMID: 35590728</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>ACS macro letters, 2014-06, Vol.3 (6), p.565-568</ispartof><rights>Copyright © 2014 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</citedby><cites>FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/mz500190w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/mz500190w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35590728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1393976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Jian</creatorcontrib><creatorcontrib>Priftis, Dimitrios</creatorcontrib><creatorcontrib>Farina, Robert</creatorcontrib><creatorcontrib>Perry, Sarah L</creatorcontrib><creatorcontrib>Leon, Lorraine</creatorcontrib><creatorcontrib>Whitmer, Jonathan</creatorcontrib><creatorcontrib>Hoffmann, Kyle</creatorcontrib><creatorcontrib>Tirrell, Matthew</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkF1LwzAUhoMoTuYu_ANSBEEvqknTpM2dMvwYDNzFvA5pesI62mYmrTp_vZHO4YXn5j0cHl4OD0JnBN8QnJDb5othTAT-OEAnCeEkJpzRwz_7CE28X-MwjJNcpMdoRBkTOEvyE3Q3aztwRulK1dESWl_ZNrImWth6CzXozoWlg2hqm00NnyGVBveuwmmxUh78KToyqvYw2eUYvT4-LKfP8fzlaTa9n8cqxXkXgwFKqcqLVIDikGNSlEqXKsdYE6oMScqS8YKrDGccwGBWcmoEScEURYFTOkYXQ6_1XSW9rjrQK23bNvwoCRVUZDxAVwO0cfatB9_JpvIa6lq1YHsvE86zTLCEJwG9HlDtrPcOjNy4qlFuKwmWP2LlXmxgz3e1fdFAuSd_NQbgcgCU9nJte9cGFf8UfQNWc38r</recordid><startdate>20140617</startdate><enddate>20140617</enddate><creator>Qin, Jian</creator><creator>Priftis, Dimitrios</creator><creator>Farina, Robert</creator><creator>Perry, Sarah L</creator><creator>Leon, Lorraine</creator><creator>Whitmer, Jonathan</creator><creator>Hoffmann, Kyle</creator><creator>Tirrell, Matthew</creator><creator>de Pablo, Juan J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140617</creationdate><title>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</title><author>Qin, Jian ; Priftis, Dimitrios ; Farina, Robert ; Perry, Sarah L ; Leon, Lorraine ; Whitmer, Jonathan ; Hoffmann, Kyle ; Tirrell, Matthew ; de Pablo, Juan J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-efe333a8b49ea6e801bdacda800c13af12dd56b6a7076eef05d63f914efbbb043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>online_resources</toplevel><creatorcontrib>Qin, Jian</creatorcontrib><creatorcontrib>Priftis, Dimitrios</creatorcontrib><creatorcontrib>Farina, Robert</creatorcontrib><creatorcontrib>Perry, Sarah L</creatorcontrib><creatorcontrib>Leon, Lorraine</creatorcontrib><creatorcontrib>Whitmer, Jonathan</creatorcontrib><creatorcontrib>Hoffmann, Kyle</creatorcontrib><creatorcontrib>Tirrell, Matthew</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Jian</au><au>Priftis, Dimitrios</au><au>Farina, Robert</au><au>Perry, Sarah L</au><au>Leon, Lorraine</au><au>Whitmer, Jonathan</au><au>Hoffmann, Kyle</au><au>Tirrell, Matthew</au><au>de Pablo, Juan J</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Tension of Polyelectrolyte Complex Coacervate Phases</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2014-06-17</date><risdate>2014</risdate><volume>3</volume><issue>6</issue><spage>565</spage><epage>568</epage><pages>565-568</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>We consider polyelectrolyte solutions which, under suitable conditions, phase separate into a liquid-like coacervate phase and a coexisting supernatant phase that exhibit an extremely low interfacial tension. Such interfacial tension provides the basis for most coacervate-based applications, but little is known about it, including its dependence on molecular weight, charge density, and salt concentration. By combining a Debye–Hückel treatment for electrostatic interactions with the Cahn–Hilliard theory, we derive explicit expressions for this interfacial tension. In the absence of added salts, we find that the interfacial tension scales as N –3/2(η/ηc–1)3/2 near the critical point of the demixing transition, and that it scales as η1/2 far away from it, where N is the chain length and η measures the electrostatic interaction strength as a function of temperature, dielectric constant, and charge density of the polyelectrolytes. For the case with added salts, we find that the interfacial tension scales with the salt concentration ψ as N –1/4(1−ψ/ψc)3/2 near the critical salt concentration ψc. Our predictions are shown to be in quantitative agreement with experiments and provide a means to design new materials based on polyelectrolyte complexation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35590728</pmid><doi>10.1021/mz500190w</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-1653 |
ispartof | ACS macro letters, 2014-06, Vol.3 (6), p.565-568 |
issn | 2161-1653 2161-1653 |
language | eng |
recordid | cdi_osti_scitechconnect_1393976 |
source | ACS Publications |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Interfacial Tension of Polyelectrolyte Complex Coacervate Phases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Tension%20of%20Polyelectrolyte%20Complex%20Coacervate%20Phases&rft.jtitle=ACS%20macro%20letters&rft.au=Qin,%20Jian&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2014-06-17&rft.volume=3&rft.issue=6&rft.spage=565&rft.epage=568&rft.pages=565-568&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/mz500190w&rft_dat=%3Cproquest_osti_%3E2667795262%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2667795262&rft_id=info:pmid/35590728&rfr_iscdi=true |