Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states

Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to uti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2017-04, Vol.95 (4)
Hauptverfasser: McClean, Jarrod R., Kimchi-Schwartz, Mollie E., Carter, Jonathan, de Jong, Wibe A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. A
container_volume 95
creator McClean, Jarrod R.
Kimchi-Schwartz, Mollie E.
Carter, Jonathan
de Jong, Wibe A.
description Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.
doi_str_mv 10.1103/PhysRevA.95.042308
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1393218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1393218</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_13932183</originalsourceid><addsrcrecordid>eNqNykFLAzEQhuEgChbtH_AUvO-abLZLcxRRehTpvcTJrBnZTTAzFfffqyA9e_reDx6lbqxprTXu7jkt_IKf963ftKbvnNmeqVXXD77x3vXnp-6GS7VmfjfG2I33gxtWKu6W10pRfxxDluPcwBSYCcKkE2ENFdKix1L1TEJvQahkXUYdEUrCihlQhxx_vmCdKZ8AfgEJRs0SBPlaXYxhYlz_7ZW6fXrcP-yawkIH_qWQoOSMIAfrvOvs1v0LfQNih1AH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states</title><source>American Physical Society Journals</source><creator>McClean, Jarrod R. ; Kimchi-Schwartz, Mollie E. ; Carter, Jonathan ; de Jong, Wibe A.</creator><creatorcontrib>McClean, Jarrod R. ; Kimchi-Schwartz, Mollie E. ; Carter, Jonathan ; de Jong, Wibe A. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.</description><identifier>ISSN: 2469-9926</identifier><identifier>EISSN: 2469-9934</identifier><identifier>DOI: 10.1103/PhysRevA.95.042308</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><ispartof>Physical review. A, 2017-04, Vol.95 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1393218$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McClean, Jarrod R.</creatorcontrib><creatorcontrib>Kimchi-Schwartz, Mollie E.</creatorcontrib><creatorcontrib>Carter, Jonathan</creatorcontrib><creatorcontrib>de Jong, Wibe A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states</title><title>Physical review. A</title><description>Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.</description><issn>2469-9926</issn><issn>2469-9934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNykFLAzEQhuEgChbtH_AUvO-abLZLcxRRehTpvcTJrBnZTTAzFfffqyA9e_reDx6lbqxprTXu7jkt_IKf963ftKbvnNmeqVXXD77x3vXnp-6GS7VmfjfG2I33gxtWKu6W10pRfxxDluPcwBSYCcKkE2ENFdKix1L1TEJvQahkXUYdEUrCihlQhxx_vmCdKZ8AfgEJRs0SBPlaXYxhYlz_7ZW6fXrcP-yawkIH_qWQoOSMIAfrvOvs1v0LfQNih1AH</recordid><startdate>20170406</startdate><enddate>20170406</enddate><creator>McClean, Jarrod R.</creator><creator>Kimchi-Schwartz, Mollie E.</creator><creator>Carter, Jonathan</creator><creator>de Jong, Wibe A.</creator><general>American Physical Society (APS)</general><scope>OTOTI</scope></search><sort><creationdate>20170406</creationdate><title>Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states</title><author>McClean, Jarrod R. ; Kimchi-Schwartz, Mollie E. ; Carter, Jonathan ; de Jong, Wibe A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_13932183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClean, Jarrod R.</creatorcontrib><creatorcontrib>Kimchi-Schwartz, Mollie E.</creatorcontrib><creatorcontrib>Carter, Jonathan</creatorcontrib><creatorcontrib>de Jong, Wibe A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McClean, Jarrod R.</au><au>Kimchi-Schwartz, Mollie E.</au><au>Carter, Jonathan</au><au>de Jong, Wibe A.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states</atitle><jtitle>Physical review. A</jtitle><date>2017-04-06</date><risdate>2017</risdate><volume>95</volume><issue>4</issue><issn>2469-9926</issn><eissn>2469-9934</eissn><abstract>Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevA.95.042308</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2017-04, Vol.95 (4)
issn 2469-9926
2469-9934
language eng
recordid cdi_osti_scitechconnect_1393218
source American Physical Society Journals
title Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum-classical%20hierarchy%20for%20mitigation%20of%20decoherence%20and%20determination%20of%20excited%20states&rft.jtitle=Physical%20review.%20A&rft.au=McClean,%20Jarrod%20R.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-04-06&rft.volume=95&rft.issue=4&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.95.042308&rft_dat=%3Costi%3E1393218%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true