Ion transport controlled by nanoparticle-functionalized membranes
From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s elec...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-12, Vol.5 (1), p.5847-5847, Article 5847 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5847 |
---|---|
container_issue | 1 |
container_start_page | 5847 |
container_title | Nature communications |
container_volume | 5 |
creator | Barry, Edward McBride, Sean P. Jaeger, Heinrich M. Lin, Xiao-Min |
description | From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
The regulated passage of ions through a porous membrane is a process applicable to various research disciplines. Here, the authors present a method for the control of porous membrane ion transport, using a deposited layer of ligand-functionalized nanoparticles. |
doi_str_mv | 10.1038/ncomms6847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_osti_scitechconnect_1392576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3529113651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2a1ed702daff8ad46f0475f2ea13b07a4fe793c90bd19bb9a37030c14c932ed83</originalsourceid><addsrcrecordid>eNplkclOwzAQhi0EolXphQdAEVwQKOAtcXysKpZKlbjA2XIcB1IldrGdQ3l6XFKggrnMSPPNPxsApwjeIEiKW6Ns1_m8oOwAjDGkKEUMk8O9eASm3q9gNMJRQekxGOEsQ4zlZAxmC2uS4KTxa-tCoqwJzratrpJykxhp7Fq60KhWp3VvVGiskW3zEdOd7spYpv0JOKpl6_V05yfg5f7uef6YLp8eFvPZMlUU0ZBiiXTFIK5kXReyonkNKctqrCUiJWSS1ppxojgsK8TLkkvCIIEKUcUJ1lVBJuB80LU-NMKrJmj1Fuc1WgWBCMdZXGgCLgdo7ex7r30QXeOVbts4qe29QDnhnGFKtnoXf9CV7V1c74vKOc2KgkTqaqCUs947XYu1azrpNgJBsX2A-H1AhM92kn3Z6eoH_T53BK4HwMeUedVur-d_uU_x1pAb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1636945883</pqid></control><display><type>article</type><title>Ion transport controlled by nanoparticle-functionalized membranes</title><source>Springer Nature OA Free Journals</source><creator>Barry, Edward ; McBride, Sean P. ; Jaeger, Heinrich M. ; Lin, Xiao-Min</creator><creatorcontrib>Barry, Edward ; McBride, Sean P. ; Jaeger, Heinrich M. ; Lin, Xiao-Min ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
The regulated passage of ions through a porous membrane is a process applicable to various research disciplines. Here, the authors present a method for the control of porous membrane ion transport, using a deposited layer of ligand-functionalized nanoparticles.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms6847</identifier><identifier>PMID: 25517763</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/357/354 ; 639/638/298 ; Amination ; Biological Transport ; Carboxylic Acids - chemistry ; Gold - chemistry ; Humanities and Social Sciences ; Hydrogen-Ion Concentration ; Ion Transport ; Kinetics ; Membranes, Artificial ; Metal Nanoparticles - chemistry ; Methylation ; multidisciplinary ; Porosity ; Science ; Science (multidisciplinary) ; Static Electricity</subject><ispartof>Nature communications, 2014-12, Vol.5 (1), p.5847-5847, Article 5847</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2a1ed702daff8ad46f0475f2ea13b07a4fe793c90bd19bb9a37030c14c932ed83</citedby><cites>FETCH-LOGICAL-c414t-2a1ed702daff8ad46f0475f2ea13b07a4fe793c90bd19bb9a37030c14c932ed83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms6847$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms6847$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41119,42188,51575</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms6847$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25517763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1392576$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barry, Edward</creatorcontrib><creatorcontrib>McBride, Sean P.</creatorcontrib><creatorcontrib>Jaeger, Heinrich M.</creatorcontrib><creatorcontrib>Lin, Xiao-Min</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Ion transport controlled by nanoparticle-functionalized membranes</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
The regulated passage of ions through a porous membrane is a process applicable to various research disciplines. Here, the authors present a method for the control of porous membrane ion transport, using a deposited layer of ligand-functionalized nanoparticles.</description><subject>639/301/357/354</subject><subject>639/638/298</subject><subject>Amination</subject><subject>Biological Transport</subject><subject>Carboxylic Acids - chemistry</subject><subject>Gold - chemistry</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Transport</subject><subject>Kinetics</subject><subject>Membranes, Artificial</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Methylation</subject><subject>multidisciplinary</subject><subject>Porosity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Static Electricity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkclOwzAQhi0EolXphQdAEVwQKOAtcXysKpZKlbjA2XIcB1IldrGdQ3l6XFKggrnMSPPNPxsApwjeIEiKW6Ns1_m8oOwAjDGkKEUMk8O9eASm3q9gNMJRQekxGOEsQ4zlZAxmC2uS4KTxa-tCoqwJzratrpJykxhp7Fq60KhWp3VvVGiskW3zEdOd7spYpv0JOKpl6_V05yfg5f7uef6YLp8eFvPZMlUU0ZBiiXTFIK5kXReyonkNKctqrCUiJWSS1ppxojgsK8TLkkvCIIEKUcUJ1lVBJuB80LU-NMKrJmj1Fuc1WgWBCMdZXGgCLgdo7ex7r30QXeOVbts4qe29QDnhnGFKtnoXf9CV7V1c74vKOc2KgkTqaqCUs947XYu1azrpNgJBsX2A-H1AhM92kn3Z6eoH_T53BK4HwMeUedVur-d_uU_x1pAb</recordid><startdate>20141217</startdate><enddate>20141217</enddate><creator>Barry, Edward</creator><creator>McBride, Sean P.</creator><creator>Jaeger, Heinrich M.</creator><creator>Lin, Xiao-Min</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20141217</creationdate><title>Ion transport controlled by nanoparticle-functionalized membranes</title><author>Barry, Edward ; McBride, Sean P. ; Jaeger, Heinrich M. ; Lin, Xiao-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2a1ed702daff8ad46f0475f2ea13b07a4fe793c90bd19bb9a37030c14c932ed83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/357/354</topic><topic>639/638/298</topic><topic>Amination</topic><topic>Biological Transport</topic><topic>Carboxylic Acids - chemistry</topic><topic>Gold - chemistry</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Transport</topic><topic>Kinetics</topic><topic>Membranes, Artificial</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Methylation</topic><topic>multidisciplinary</topic><topic>Porosity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barry, Edward</creatorcontrib><creatorcontrib>McBride, Sean P.</creatorcontrib><creatorcontrib>Jaeger, Heinrich M.</creatorcontrib><creatorcontrib>Lin, Xiao-Min</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barry, Edward</au><au>McBride, Sean P.</au><au>Jaeger, Heinrich M.</au><au>Lin, Xiao-Min</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ion transport controlled by nanoparticle-functionalized membranes</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-12-17</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>5847</spage><epage>5847</epage><pages>5847-5847</pages><artnum>5847</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane’s electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
The regulated passage of ions through a porous membrane is a process applicable to various research disciplines. Here, the authors present a method for the control of porous membrane ion transport, using a deposited layer of ligand-functionalized nanoparticles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25517763</pmid><doi>10.1038/ncomms6847</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-12, Vol.5 (1), p.5847-5847, Article 5847 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_osti_scitechconnect_1392576 |
source | Springer Nature OA Free Journals |
subjects | 639/301/357/354 639/638/298 Amination Biological Transport Carboxylic Acids - chemistry Gold - chemistry Humanities and Social Sciences Hydrogen-Ion Concentration Ion Transport Kinetics Membranes, Artificial Metal Nanoparticles - chemistry Methylation multidisciplinary Porosity Science Science (multidisciplinary) Static Electricity |
title | Ion transport controlled by nanoparticle-functionalized membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ion%20transport%20controlled%20by%20nanoparticle-functionalized%20membranes&rft.jtitle=Nature%20communications&rft.au=Barry,%20Edward&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2014-12-17&rft.volume=5&rft.issue=1&rft.spage=5847&rft.epage=5847&rft.pages=5847-5847&rft.artnum=5847&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms6847&rft_dat=%3Cproquest_C6C%3E3529113651%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1636945883&rft_id=info:pmid/25517763&rfr_iscdi=true |