Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography
Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD)-based tec...
Gespeichert in:
Veröffentlicht in: | ACS nano 2015-05, Vol.9 (5), p.5333-5347 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5347 |
---|---|
container_issue | 5 |
container_start_page | 5333 |
container_title | ACS nano |
container_volume | 9 |
creator | Segal-Peretz, Tamar Winterstein, Jonathan Doxastakis, Manolis Ramírez-Hernández, Abelardo Biswas, Mahua Ren, Jiaxing Suh, Hyo Seon Darling, Seth B Liddle, J. Alexander Elam, Jeffrey W de Pablo, Juan J Zaluzec, Nestor J Nealey, Paul F |
description | Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD)-based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in an ALD tool and an emerging technique for enhancing the etch contrast of BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three-dimensional (3D) characterization of BCP films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-b-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including (1) the 3D structure of defects in cylindrical and lamellar phases, (2) the nonperpendicular 3D surface of grain boundaries in the cylindrical phase, and (3) the 3D arrangement of spheres in body-centered-cubic (BCC) and hexagonal-closed-pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer and can lead to a better understating of the physics that is utilized in BCP lithography. |
doi_str_mv | 10.1021/acsnano.5b01013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1392502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1683574787</sourcerecordid><originalsourceid>FETCH-LOGICAL-a426t-4a94f7c334e1c15d1498b41abbd0df7f624cdcf86c5100efb3640c06b49700393</originalsourceid><addsrcrecordid>eNp1kc1O3DAUhS1UVCh0za6yuqpUBezYcZIlDLRFQmIxU6k7y3GuiWliD7ZTaXgQnhePZmDXla_k75z7cxA6o-SckpJeKB2dcv686ggllB2gY9oyUZBG_PnwXlf0CH2K8ZGQqm5q8REdlVWb_3h9jF4WgwpKJwj22boHnAbAqyEAFNd2Ahetd2rEyxRmneYA2Bt8NXr9Fy_82o-bCULE_6zCS3iawSWb4Vtn7JiCSlmLlxuXLaONWLkeL7VybttmFZSLk41bf3wzgk4hFys_-Yeg1sPmFB0aNUb4vH9P0O8fN6vFr-Lu_uft4vKuULwUqeCq5abWjHGgmlY95W3Tcaq6rie9qY0oue61aYSuKCFgOiY40UR0vK0JYS07QV93vj4mK6O2CfSgvXN5IklZW1akzNC3HbQOPm8Zk8yTaxhH5cDPUVLRsKrm-bYZvdihOvgYAxi5DnZSYSMpkdvE5D4xuU8sK77szedugv6df4soA993QFbKRz-HHEj8r90rn2ylJw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683574787</pqid></control><display><type>article</type><title>Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography</title><source>ACS Publications</source><creator>Segal-Peretz, Tamar ; Winterstein, Jonathan ; Doxastakis, Manolis ; Ramírez-Hernández, Abelardo ; Biswas, Mahua ; Ren, Jiaxing ; Suh, Hyo Seon ; Darling, Seth B ; Liddle, J. Alexander ; Elam, Jeffrey W ; de Pablo, Juan J ; Zaluzec, Nestor J ; Nealey, Paul F</creator><creatorcontrib>Segal-Peretz, Tamar ; Winterstein, Jonathan ; Doxastakis, Manolis ; Ramírez-Hernández, Abelardo ; Biswas, Mahua ; Ren, Jiaxing ; Suh, Hyo Seon ; Darling, Seth B ; Liddle, J. Alexander ; Elam, Jeffrey W ; de Pablo, Juan J ; Zaluzec, Nestor J ; Nealey, Paul F ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD)-based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in an ALD tool and an emerging technique for enhancing the etch contrast of BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three-dimensional (3D) characterization of BCP films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-b-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including (1) the 3D structure of defects in cylindrical and lamellar phases, (2) the nonperpendicular 3D surface of grain boundaries in the cylindrical phase, and (3) the 3D arrangement of spheres in body-centered-cubic (BCC) and hexagonal-closed-pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer and can lead to a better understating of the physics that is utilized in BCP lithography.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b01013</identifier><identifier>PMID: 25919347</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Block copolymers ; self - assembly ; SIS ; STEM ; TEM ; tomography</subject><ispartof>ACS nano, 2015-05, Vol.9 (5), p.5333-5347</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a426t-4a94f7c334e1c15d1498b41abbd0df7f624cdcf86c5100efb3640c06b49700393</citedby><cites>FETCH-LOGICAL-a426t-4a94f7c334e1c15d1498b41abbd0df7f624cdcf86c5100efb3640c06b49700393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b01013$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b01013$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25919347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1392502$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Winterstein, Jonathan</creatorcontrib><creatorcontrib>Doxastakis, Manolis</creatorcontrib><creatorcontrib>Ramírez-Hernández, Abelardo</creatorcontrib><creatorcontrib>Biswas, Mahua</creatorcontrib><creatorcontrib>Ren, Jiaxing</creatorcontrib><creatorcontrib>Suh, Hyo Seon</creatorcontrib><creatorcontrib>Darling, Seth B</creatorcontrib><creatorcontrib>Liddle, J. Alexander</creatorcontrib><creatorcontrib>Elam, Jeffrey W</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Zaluzec, Nestor J</creatorcontrib><creatorcontrib>Nealey, Paul F</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD)-based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in an ALD tool and an emerging technique for enhancing the etch contrast of BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three-dimensional (3D) characterization of BCP films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-b-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including (1) the 3D structure of defects in cylindrical and lamellar phases, (2) the nonperpendicular 3D surface of grain boundaries in the cylindrical phase, and (3) the 3D arrangement of spheres in body-centered-cubic (BCC) and hexagonal-closed-pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer and can lead to a better understating of the physics that is utilized in BCP lithography.</description><subject>Block copolymers</subject><subject>self - assembly</subject><subject>SIS</subject><subject>STEM</subject><subject>TEM</subject><subject>tomography</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O3DAUhS1UVCh0za6yuqpUBezYcZIlDLRFQmIxU6k7y3GuiWliD7ZTaXgQnhePZmDXla_k75z7cxA6o-SckpJeKB2dcv686ggllB2gY9oyUZBG_PnwXlf0CH2K8ZGQqm5q8REdlVWb_3h9jF4WgwpKJwj22boHnAbAqyEAFNd2Ahetd2rEyxRmneYA2Bt8NXr9Fy_82o-bCULE_6zCS3iawSWb4Vtn7JiCSlmLlxuXLaONWLkeL7VybttmFZSLk41bf3wzgk4hFys_-Yeg1sPmFB0aNUb4vH9P0O8fN6vFr-Lu_uft4vKuULwUqeCq5abWjHGgmlY95W3Tcaq6rie9qY0oue61aYSuKCFgOiY40UR0vK0JYS07QV93vj4mK6O2CfSgvXN5IklZW1akzNC3HbQOPm8Zk8yTaxhH5cDPUVLRsKrm-bYZvdihOvgYAxi5DnZSYSMpkdvE5D4xuU8sK77szedugv6df4soA993QFbKRz-HHEj8r90rn2ylJw</recordid><startdate>20150526</startdate><enddate>20150526</enddate><creator>Segal-Peretz, Tamar</creator><creator>Winterstein, Jonathan</creator><creator>Doxastakis, Manolis</creator><creator>Ramírez-Hernández, Abelardo</creator><creator>Biswas, Mahua</creator><creator>Ren, Jiaxing</creator><creator>Suh, Hyo Seon</creator><creator>Darling, Seth B</creator><creator>Liddle, J. Alexander</creator><creator>Elam, Jeffrey W</creator><creator>de Pablo, Juan J</creator><creator>Zaluzec, Nestor J</creator><creator>Nealey, Paul F</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150526</creationdate><title>Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography</title><author>Segal-Peretz, Tamar ; Winterstein, Jonathan ; Doxastakis, Manolis ; Ramírez-Hernández, Abelardo ; Biswas, Mahua ; Ren, Jiaxing ; Suh, Hyo Seon ; Darling, Seth B ; Liddle, J. Alexander ; Elam, Jeffrey W ; de Pablo, Juan J ; Zaluzec, Nestor J ; Nealey, Paul F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a426t-4a94f7c334e1c15d1498b41abbd0df7f624cdcf86c5100efb3640c06b49700393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Block copolymers</topic><topic>self - assembly</topic><topic>SIS</topic><topic>STEM</topic><topic>TEM</topic><topic>tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Segal-Peretz, Tamar</creatorcontrib><creatorcontrib>Winterstein, Jonathan</creatorcontrib><creatorcontrib>Doxastakis, Manolis</creatorcontrib><creatorcontrib>Ramírez-Hernández, Abelardo</creatorcontrib><creatorcontrib>Biswas, Mahua</creatorcontrib><creatorcontrib>Ren, Jiaxing</creatorcontrib><creatorcontrib>Suh, Hyo Seon</creatorcontrib><creatorcontrib>Darling, Seth B</creatorcontrib><creatorcontrib>Liddle, J. Alexander</creatorcontrib><creatorcontrib>Elam, Jeffrey W</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Zaluzec, Nestor J</creatorcontrib><creatorcontrib>Nealey, Paul F</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Segal-Peretz, Tamar</au><au>Winterstein, Jonathan</au><au>Doxastakis, Manolis</au><au>Ramírez-Hernández, Abelardo</au><au>Biswas, Mahua</au><au>Ren, Jiaxing</au><au>Suh, Hyo Seon</au><au>Darling, Seth B</au><au>Liddle, J. Alexander</au><au>Elam, Jeffrey W</au><au>de Pablo, Juan J</au><au>Zaluzec, Nestor J</au><au>Nealey, Paul F</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-05-26</date><risdate>2015</risdate><volume>9</volume><issue>5</issue><spage>5333</spage><epage>5347</epage><pages>5333-5347</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD)-based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in an ALD tool and an emerging technique for enhancing the etch contrast of BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three-dimensional (3D) characterization of BCP films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-b-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including (1) the 3D structure of defects in cylindrical and lamellar phases, (2) the nonperpendicular 3D surface of grain boundaries in the cylindrical phase, and (3) the 3D arrangement of spheres in body-centered-cubic (BCC) and hexagonal-closed-pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer and can lead to a better understating of the physics that is utilized in BCP lithography.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25919347</pmid><doi>10.1021/acsnano.5b01013</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2015-05, Vol.9 (5), p.5333-5347 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_osti_scitechconnect_1392502 |
source | ACS Publications |
subjects | Block copolymers self - assembly SIS STEM TEM tomography |
title | Characterizing the Three-Dimensional Structure of Block Copolymers via Sequential Infiltration Synthesis and Scanning Transmission Electron Tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20the%20Three-Dimensional%20Structure%20of%20Block%20Copolymers%20via%20Sequential%20Infiltration%20Synthesis%20and%20Scanning%20Transmission%20Electron%20Tomography&rft.jtitle=ACS%20nano&rft.au=Segal-Peretz,%20Tamar&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-05-26&rft.volume=9&rft.issue=5&rft.spage=5333&rft.epage=5347&rft.pages=5333-5347&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b01013&rft_dat=%3Cproquest_osti_%3E1683574787%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683574787&rft_id=info:pmid/25919347&rfr_iscdi=true |