Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids
Fast fluorescence resonance energy transfer between CdSe nanoplatelets on a picosecond timescale is measured. This process is faster than Auger recombination and leads to the observation of multiexcitonic energy transfer in these materials. Fluorescence resonance energy transfer (FRET) enables photo...
Gespeichert in:
Veröffentlicht in: | Nature materials 2015-05, Vol.14 (5), p.484-489 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 489 |
---|---|
container_issue | 5 |
container_start_page | 484 |
container_title | Nature materials |
container_volume | 14 |
creator | Rowland, Clare E. Fedin, Igor Zhang, Hui Gray, Stephen K. Govorov, Alexander O. Talapin, Dmitri V. Schaller, Richard D. |
description | Fast fluorescence resonance energy transfer between CdSe nanoplatelets on a picosecond timescale is measured. This process is faster than Auger recombination and leads to the observation of multiexcitonic energy transfer in these materials.
Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting
1
, wavelength downconversion in light-emitting diodes
2
(LEDs), and optical biosensing schemes
3
. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells
4
, non-contact chromophore pumping from a proximal LED
5
, and markedly reduced gain thresholds
6
. However, the fastest reported FRET time constants involving spherical quantum dots (0.12–1 ns; refs
7
,
8
,
9
) do not outpace biexciton Auger recombination (0.01–0.1 ns; ref.
10
), which impedes multiexciton-driven applications including electrically pumped lasers
11
and carrier-multiplication-enhanced photovoltaics
12
,
13
. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions
14
exhibit intense optical transitions
14
and hundreds-of-picosecond Auger recombination
15
,
16
, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (∼6–23 ps, presumably for co-facial arrangements) can occur 15–50 times faster than Auger recombination
15
,
16
and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. |
doi_str_mv | 10.1038/nmat4231 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1392336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1675169292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-c86df5c5092cb6c6afd764e3a7cd3688b549f3b922174ec4fd84a2af5f40dd173</originalsourceid><addsrcrecordid>eNqNkd1KHDEUx0OpVN0W-gQytDd6sW2-M3O5LK0KQgttr4dMcqKRmWSbZKC-jc_ikxnZ9QOvepWTnF9-4eSP0EeCvxDM2q9h0oVTRt6gA8KVXHIp8dtdTQil--gw52uMKRFCvkP7VCjFOyEP0PzTm5jBxGAbCJAub5qSdMgOUqPr2TSPxcM_40sMz504l402kJvVfFm3qd6fBh908ZXyoXmo083d7dr-giboEDejLjBCaXIcvc3v0Z7TY4YPu3WB_nz_9nt9trz4cXq-Xl0sjeCkLE0rrRNG4I6aQRqpnVWSA9PKWCbbdhC8c2zoKCWKg-HOtlxT7YTj2Fqi2AJ92npjLr7PdQowV3XWAKb0hHWUMVmh4y20SfHvDLn0k88GxlEHiHPuieoYlUSQ_0ClqlhHq3iBPr9Cr-OcQp22CqXCrewweRaaFHNO4PpN8lP9u57g_iHa_jHaih7thPMwgX0CH7OswMkWyLUVai4vXnwtuwd6Mq72</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767086901</pqid></control><display><type>article</type><title>Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Rowland, Clare E. ; Fedin, Igor ; Zhang, Hui ; Gray, Stephen K. ; Govorov, Alexander O. ; Talapin, Dmitri V. ; Schaller, Richard D.</creator><creatorcontrib>Rowland, Clare E. ; Fedin, Igor ; Zhang, Hui ; Gray, Stephen K. ; Govorov, Alexander O. ; Talapin, Dmitri V. ; Schaller, Richard D. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Fast fluorescence resonance energy transfer between CdSe nanoplatelets on a picosecond timescale is measured. This process is faster than Auger recombination and leads to the observation of multiexcitonic energy transfer in these materials.
Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting
1
, wavelength downconversion in light-emitting diodes
2
(LEDs), and optical biosensing schemes
3
. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells
4
, non-contact chromophore pumping from a proximal LED
5
, and markedly reduced gain thresholds
6
. However, the fastest reported FRET time constants involving spherical quantum dots (0.12–1 ns; refs
7
,
8
,
9
) do not outpace biexciton Auger recombination (0.01–0.1 ns; ref.
10
), which impedes multiexciton-driven applications including electrically pumped lasers
11
and carrier-multiplication-enhanced photovoltaics
12
,
13
. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions
14
exhibit intense optical transitions
14
and hundreds-of-picosecond Auger recombination
15
,
16
, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (∼6–23 ps, presumably for co-facial arrangements) can occur 15–50 times faster than Auger recombination
15
,
16
and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4231</identifier><identifier>PMID: 25774956</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/125 ; 639/301/1034/1037 ; 639/301/357/1018 ; 639/624/399/354 ; 639/925/357/995 ; Augers ; Biomaterials ; Cadmium selenides ; Condensed Matter Physics ; Electrons ; Energy ; Energy transfer ; Fretting ; Intermetallics ; Lasers ; letter ; Ligands ; Light-emitting diodes ; Materials Science ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Photovoltaics ; Quantum dots ; Semiconductors ; Solar cells</subject><ispartof>Nature materials, 2015-05, Vol.14 (5), p.484-489</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-c86df5c5092cb6c6afd764e3a7cd3688b549f3b922174ec4fd84a2af5f40dd173</citedby><cites>FETCH-LOGICAL-c541t-c86df5c5092cb6c6afd764e3a7cd3688b549f3b922174ec4fd84a2af5f40dd173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25774956$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1392336$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rowland, Clare E.</creatorcontrib><creatorcontrib>Fedin, Igor</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Gray, Stephen K.</creatorcontrib><creatorcontrib>Govorov, Alexander O.</creatorcontrib><creatorcontrib>Talapin, Dmitri V.</creatorcontrib><creatorcontrib>Schaller, Richard D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Fast fluorescence resonance energy transfer between CdSe nanoplatelets on a picosecond timescale is measured. This process is faster than Auger recombination and leads to the observation of multiexcitonic energy transfer in these materials.
Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting
1
, wavelength downconversion in light-emitting diodes
2
(LEDs), and optical biosensing schemes
3
. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells
4
, non-contact chromophore pumping from a proximal LED
5
, and markedly reduced gain thresholds
6
. However, the fastest reported FRET time constants involving spherical quantum dots (0.12–1 ns; refs
7
,
8
,
9
) do not outpace biexciton Auger recombination (0.01–0.1 ns; ref.
10
), which impedes multiexciton-driven applications including electrically pumped lasers
11
and carrier-multiplication-enhanced photovoltaics
12
,
13
. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions
14
exhibit intense optical transitions
14
and hundreds-of-picosecond Auger recombination
15
,
16
, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (∼6–23 ps, presumably for co-facial arrangements) can occur 15–50 times faster than Auger recombination
15
,
16
and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.</description><subject>119/118</subject><subject>140/125</subject><subject>639/301/1034/1037</subject><subject>639/301/357/1018</subject><subject>639/624/399/354</subject><subject>639/925/357/995</subject><subject>Augers</subject><subject>Biomaterials</subject><subject>Cadmium selenides</subject><subject>Condensed Matter Physics</subject><subject>Electrons</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Fretting</subject><subject>Intermetallics</subject><subject>Lasers</subject><subject>letter</subject><subject>Ligands</subject><subject>Light-emitting diodes</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaics</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><subject>Solar cells</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd1KHDEUx0OpVN0W-gQytDd6sW2-M3O5LK0KQgttr4dMcqKRmWSbZKC-jc_ikxnZ9QOvepWTnF9-4eSP0EeCvxDM2q9h0oVTRt6gA8KVXHIp8dtdTQil--gw52uMKRFCvkP7VCjFOyEP0PzTm5jBxGAbCJAub5qSdMgOUqPr2TSPxcM_40sMz504l402kJvVfFm3qd6fBh908ZXyoXmo083d7dr-giboEDejLjBCaXIcvc3v0Z7TY4YPu3WB_nz_9nt9trz4cXq-Xl0sjeCkLE0rrRNG4I6aQRqpnVWSA9PKWCbbdhC8c2zoKCWKg-HOtlxT7YTj2Fqi2AJ92npjLr7PdQowV3XWAKb0hHWUMVmh4y20SfHvDLn0k88GxlEHiHPuieoYlUSQ_0ClqlhHq3iBPr9Cr-OcQp22CqXCrewweRaaFHNO4PpN8lP9u57g_iHa_jHaih7thPMwgX0CH7OswMkWyLUVai4vXnwtuwd6Mq72</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Rowland, Clare E.</creator><creator>Fedin, Igor</creator><creator>Zhang, Hui</creator><creator>Gray, Stephen K.</creator><creator>Govorov, Alexander O.</creator><creator>Talapin, Dmitri V.</creator><creator>Schaller, Richard D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QQ</scope><scope>7U5</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150501</creationdate><title>Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids</title><author>Rowland, Clare E. ; Fedin, Igor ; Zhang, Hui ; Gray, Stephen K. ; Govorov, Alexander O. ; Talapin, Dmitri V. ; Schaller, Richard D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-c86df5c5092cb6c6afd764e3a7cd3688b549f3b922174ec4fd84a2af5f40dd173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>140/125</topic><topic>639/301/1034/1037</topic><topic>639/301/357/1018</topic><topic>639/624/399/354</topic><topic>639/925/357/995</topic><topic>Augers</topic><topic>Biomaterials</topic><topic>Cadmium selenides</topic><topic>Condensed Matter Physics</topic><topic>Electrons</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Fretting</topic><topic>Intermetallics</topic><topic>Lasers</topic><topic>letter</topic><topic>Ligands</topic><topic>Light-emitting diodes</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaics</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rowland, Clare E.</creatorcontrib><creatorcontrib>Fedin, Igor</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Gray, Stephen K.</creatorcontrib><creatorcontrib>Govorov, Alexander O.</creatorcontrib><creatorcontrib>Talapin, Dmitri V.</creatorcontrib><creatorcontrib>Schaller, Richard D.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rowland, Clare E.</au><au>Fedin, Igor</au><au>Zhang, Hui</au><au>Gray, Stephen K.</au><au>Govorov, Alexander O.</au><au>Talapin, Dmitri V.</au><au>Schaller, Richard D.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>14</volume><issue>5</issue><spage>484</spage><epage>489</epage><pages>484-489</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Fast fluorescence resonance energy transfer between CdSe nanoplatelets on a picosecond timescale is measured. This process is faster than Auger recombination and leads to the observation of multiexcitonic energy transfer in these materials.
Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting
1
, wavelength downconversion in light-emitting diodes
2
(LEDs), and optical biosensing schemes
3
. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells
4
, non-contact chromophore pumping from a proximal LED
5
, and markedly reduced gain thresholds
6
. However, the fastest reported FRET time constants involving spherical quantum dots (0.12–1 ns; refs
7
,
8
,
9
) do not outpace biexciton Auger recombination (0.01–0.1 ns; ref.
10
), which impedes multiexciton-driven applications including electrically pumped lasers
11
and carrier-multiplication-enhanced photovoltaics
12
,
13
. Few-monolayer-thick semiconductor nanoplatelets (NPLs) with tens-of-nanometre lateral dimensions
14
exhibit intense optical transitions
14
and hundreds-of-picosecond Auger recombination
15
,
16
, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that interplate FRET (∼6–23 ps, presumably for co-facial arrangements) can occur 15–50 times faster than Auger recombination
15
,
16
and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25774956</pmid><doi>10.1038/nmat4231</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2015-05, Vol.14 (5), p.484-489 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1392336 |
source | Nature; Alma/SFX Local Collection |
subjects | 119/118 140/125 639/301/1034/1037 639/301/357/1018 639/624/399/354 639/925/357/995 Augers Biomaterials Cadmium selenides Condensed Matter Physics Electrons Energy Energy transfer Fretting Intermetallics Lasers letter Ligands Light-emitting diodes Materials Science Nanostructure Nanotechnology Optical and Electronic Materials Photovoltaics Quantum dots Semiconductors Solar cells |
title | Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Picosecond%20energy%20transfer%20and%20multiexciton%20transfer%20outpaces%20Auger%20recombination%20in%20binary%C2%A0CdSe%20nanoplatelet%20solids&rft.jtitle=Nature%20materials&rft.au=Rowland,%20Clare%20E.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-05-01&rft.volume=14&rft.issue=5&rft.spage=484&rft.epage=489&rft.pages=484-489&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4231&rft_dat=%3Cproquest_osti_%3E1675169292%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767086901&rft_id=info:pmid/25774956&rfr_iscdi=true |