Cs 2 Hg 3 S 4 : A Low-Dimensional Direct Bandgap Semiconductor

Cs2Hg3S4 was synthesized by slowly cooling a melted stoichiometric mixture of Hg and Cs2S4. Cs2Hg3S4 crystallizes in the Ibam spacegroup with a = 6.278(1) angstrom, b = 11.601(2) angstrom, and c = 14.431(3)angstrom; d(calc) = 6.29 g/cm(3). Its crystal structure consists of straight chains of [Hg3S4]...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2015-01, Vol.27 (1), p.370-378
Hauptverfasser: Islam, Saiful M., Vanishri, S., Li, Hao, Stoumpos, Constantinos C., Peters, John. A., Sebastian, Maria, Liu, Zhifu, Wang, Shichao, Haynes, Alyssa S., Im, Jino, Freeman, Arthur J., Wessels, Bruce, Kanatzidis, Mercouri G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cs2Hg3S4 was synthesized by slowly cooling a melted stoichiometric mixture of Hg and Cs2S4. Cs2Hg3S4 crystallizes in the Ibam spacegroup with a = 6.278(1) angstrom, b = 11.601(2) angstrom, and c = 14.431(3)angstrom; d(calc) = 6.29 g/cm(3). Its crystal structure consists of straight chains of [Hg3S4](n)(2n-) that engage in side-by-side weak bonding interactions forming layers and are charge balanced by Cs+ cations. The thermal stability of this compound was investigated with differential thermal analysis and temperature dependent in situ synchrotron powder diffraction. The thermal expansion coefficients of the a, b, and c axes were assessed at 1.56 x 10(-5), 2.79 x10(-5), and 3.04 x 10(-5) K-1, respectively. Large single-crystals up to similar to 5 cm in length and similar to 1 cm in diameter were grown using a vertical Bridgman method. Electrical conductivity and photoconductivity measurements on naturally cleaved crystals of Cs2Hg3S4 gave resistivity rho of >= 10(8) Omega.cm and carrier mobility-lifetime (mu tau) products of 4.2 x 10(-4) and 5.82 x 10(-5) cm(2) V-1 for electrons and holes, respectively. Cs2Hg3S4 is a semiconductor with a bandgap E-g similar to 2.8 eV and exhibits photoluminescence (PL) at low temperature. Electronic band structure calculations within the density functional theory (DFT) framework employing the nonlocal hybrid functional within Heyd-Scuseria-Ernzerhof (HSE) formalism indicate a direct bandgap of 2.81 eV at Gamma. The theoretical calculations show that the conduction band minimum has a highly dispersive and relatively isotropic mercury-based s-orbital-like character while the valence band maximum features a much less dispersive and more anisotropic sulfur orbital-based band.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm504089r