Rejoinder

We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics 2016-01, Vol.58 (1)
Hauptverfasser: Gramacy, Robert B., Gray, Genetha A., Le Digabel, Sébastien, Lee, Herbert K. H., Ranjan, Pritam, Wells, Garth, Wild, Stefan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Technometrics
container_volume 58
creator Gramacy, Robert B.
Gray, Genetha A.
Le Digabel, Sébastien
Lee, Herbert K. H.
Ranjan, Pritam
Wells, Garth
Wild, Stefan M.
description We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software.
doi_str_mv 10.1080/00401706.2015.1106979
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1391634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1391634</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_13916343</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANBDFIzWT3BxT7zLtUkzi-Is7kVipCmSgMn_IwU_wOktD2BPqAh7PCK2SBaN0kidIkLjrFuAoI6t1FbzEsR85JzWsCllQiTWvRUgbmHKMT3Dp4HV6_EuYfdzC4fL-X66ylxqHIqPNfjR55SCrwOxI8Mt_5W-j-Ureg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rejoinder</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Gramacy, Robert B. ; Gray, Genetha A. ; Le Digabel, Sébastien ; Lee, Herbert K. H. ; Ranjan, Pritam ; Wells, Garth ; Wild, Stefan M.</creator><creatorcontrib>Gramacy, Robert B. ; Gray, Genetha A. ; Le Digabel, Sébastien ; Lee, Herbert K. H. ; Ranjan, Pritam ; Wells, Garth ; Wild, Stefan M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2015.1106979</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>MATHEMATICS AND COMPUTING</subject><ispartof>Technometrics, 2016-01, Vol.58 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1391634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gramacy, Robert B.</creatorcontrib><creatorcontrib>Gray, Genetha A.</creatorcontrib><creatorcontrib>Le Digabel, Sébastien</creatorcontrib><creatorcontrib>Lee, Herbert K. H.</creatorcontrib><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Wild, Stefan M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Rejoinder</title><title>Technometrics</title><description>We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software.</description><subject>MATHEMATICS AND COMPUTING</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNyrEKwjAQANBDFIzWT3BxT7zLtUkzi-Is7kVipCmSgMn_IwU_wOktD2BPqAh7PCK2SBaN0kidIkLjrFuAoI6t1FbzEsR85JzWsCllQiTWvRUgbmHKMT3Dp4HV6_EuYfdzC4fL-X66ylxqHIqPNfjR55SCrwOxI8Mt_5W-j-Ureg</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Gramacy, Robert B.</creator><creator>Gray, Genetha A.</creator><creator>Le Digabel, Sébastien</creator><creator>Lee, Herbert K. H.</creator><creator>Ranjan, Pritam</creator><creator>Wells, Garth</creator><creator>Wild, Stefan M.</creator><general>Taylor &amp; Francis</general><scope>OTOTI</scope></search><sort><creationdate>20160102</creationdate><title>Rejoinder</title><author>Gramacy, Robert B. ; Gray, Genetha A. ; Le Digabel, Sébastien ; Lee, Herbert K. H. ; Ranjan, Pritam ; Wells, Garth ; Wild, Stefan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_13916343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATHEMATICS AND COMPUTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gramacy, Robert B.</creatorcontrib><creatorcontrib>Gray, Genetha A.</creatorcontrib><creatorcontrib>Le Digabel, Sébastien</creatorcontrib><creatorcontrib>Lee, Herbert K. H.</creatorcontrib><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Wild, Stefan M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gramacy, Robert B.</au><au>Gray, Genetha A.</au><au>Le Digabel, Sébastien</au><au>Lee, Herbert K. H.</au><au>Ranjan, Pritam</au><au>Wells, Garth</au><au>Wild, Stefan M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rejoinder</atitle><jtitle>Technometrics</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>58</volume><issue>1</issue><issn>0040-1706</issn><eissn>1537-2723</eissn><abstract>We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00401706.2015.1106979</doi></addata></record>
fulltext fulltext
identifier ISSN: 0040-1706
ispartof Technometrics, 2016-01, Vol.58 (1)
issn 0040-1706
1537-2723
language eng
recordid cdi_osti_scitechconnect_1391634
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects MATHEMATICS AND COMPUTING
title Rejoinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rejoinder&rft.jtitle=Technometrics&rft.au=Gramacy,%20Robert%20B.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-01-02&rft.volume=58&rft.issue=1&rft.issn=0040-1706&rft.eissn=1537-2723&rft_id=info:doi/10.1080/00401706.2015.1106979&rft_dat=%3Costi%3E1391634%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true