Rejoinder
We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax)...
Gespeichert in:
Veröffentlicht in: | Technometrics 2016-01, Vol.58 (1) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Technometrics |
container_volume | 58 |
creator | Gramacy, Robert B. Gray, Genetha A. Le Digabel, Sébastien Lee, Herbert K. H. Ranjan, Pritam Wells, Garth Wild, Stefan M. |
description | We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software. |
doi_str_mv | 10.1080/00401706.2015.1106979 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1391634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1391634</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_13916343</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANBDFIzWT3BxT7zLtUkzi-Is7kVipCmSgMn_IwU_wOktD2BPqAh7PCK2SBaN0kidIkLjrFuAoI6t1FbzEsR85JzWsCllQiTWvRUgbmHKMT3Dp4HV6_EuYfdzC4fL-X66ylxqHIqPNfjR55SCrwOxI8Mt_5W-j-Ureg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rejoinder</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Gramacy, Robert B. ; Gray, Genetha A. ; Le Digabel, Sébastien ; Lee, Herbert K. H. ; Ranjan, Pritam ; Wells, Garth ; Wild, Stefan M.</creator><creatorcontrib>Gramacy, Robert B. ; Gray, Genetha A. ; Le Digabel, Sébastien ; Lee, Herbert K. H. ; Ranjan, Pritam ; Wells, Garth ; Wild, Stefan M. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2015.1106979</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>MATHEMATICS AND COMPUTING</subject><ispartof>Technometrics, 2016-01, Vol.58 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1391634$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gramacy, Robert B.</creatorcontrib><creatorcontrib>Gray, Genetha A.</creatorcontrib><creatorcontrib>Le Digabel, Sébastien</creatorcontrib><creatorcontrib>Lee, Herbert K. H.</creatorcontrib><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Wild, Stefan M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Rejoinder</title><title>Technometrics</title><description>We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software.</description><subject>MATHEMATICS AND COMPUTING</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNyrEKwjAQANBDFIzWT3BxT7zLtUkzi-Is7kVipCmSgMn_IwU_wOktD2BPqAh7PCK2SBaN0kidIkLjrFuAoI6t1FbzEsR85JzWsCllQiTWvRUgbmHKMT3Dp4HV6_EuYfdzC4fL-X66ylxqHIqPNfjR55SCrwOxI8Mt_5W-j-Ureg</recordid><startdate>20160102</startdate><enddate>20160102</enddate><creator>Gramacy, Robert B.</creator><creator>Gray, Genetha A.</creator><creator>Le Digabel, Sébastien</creator><creator>Lee, Herbert K. H.</creator><creator>Ranjan, Pritam</creator><creator>Wells, Garth</creator><creator>Wild, Stefan M.</creator><general>Taylor & Francis</general><scope>OTOTI</scope></search><sort><creationdate>20160102</creationdate><title>Rejoinder</title><author>Gramacy, Robert B. ; Gray, Genetha A. ; Le Digabel, Sébastien ; Lee, Herbert K. H. ; Ranjan, Pritam ; Wells, Garth ; Wild, Stefan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_13916343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATHEMATICS AND COMPUTING</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gramacy, Robert B.</creatorcontrib><creatorcontrib>Gray, Genetha A.</creatorcontrib><creatorcontrib>Le Digabel, Sébastien</creatorcontrib><creatorcontrib>Lee, Herbert K. H.</creatorcontrib><creatorcontrib>Ranjan, Pritam</creatorcontrib><creatorcontrib>Wells, Garth</creatorcontrib><creatorcontrib>Wild, Stefan M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gramacy, Robert B.</au><au>Gray, Genetha A.</au><au>Le Digabel, Sébastien</au><au>Lee, Herbert K. H.</au><au>Ranjan, Pritam</au><au>Wells, Garth</au><au>Wild, Stefan M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rejoinder</atitle><jtitle>Technometrics</jtitle><date>2016-01-02</date><risdate>2016</risdate><volume>58</volume><issue>1</issue><issn>0040-1706</issn><eissn>1537-2723</eissn><abstract>We are grateful for the many insightful comments provided by the discussants. One team politely pointed out oversights in our literature review and the subsequent omission of a formidable comparator. Another made an important clarification about when a more aggressive variation (the so-called NoMax) would perform poorly. A third team offered enhancements to the framework, including a derivation of closed-form expressions and a more aggressive updating scheme; these enhancements were supported by an empirical study comparing new alternatives with old. The last team suggested hybridizing the statistical augmented Lagrangian (AL) method with modern stochastic search. Here we present our responses to these contributions and detail some improvements made to our own implementations in light of them. We conclude with some thoughts on statistical optimization using surrogate modeling and open-source software.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><doi>10.1080/00401706.2015.1106979</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2016-01, Vol.58 (1) |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_osti_scitechconnect_1391634 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | MATHEMATICS AND COMPUTING |
title | Rejoinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rejoinder&rft.jtitle=Technometrics&rft.au=Gramacy,%20Robert%20B.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2016-01-02&rft.volume=58&rft.issue=1&rft.issn=0040-1706&rft.eissn=1537-2723&rft_id=info:doi/10.1080/00401706.2015.1106979&rft_dat=%3Costi%3E1391634%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |