Enhanced coal-dependent methanogenesis coupled with algal biofuels: Potential water recycle and carbon capture

Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of coal geology 2017-02, Vol.171 (C), p.69-75
Hauptverfasser: Barnhart, Elliott P., Davis, Katherine J., Varonka, Matthew, Orem, William, Cunningham, Alfred B., Ramsay, Bradley D., Fields, Matthew W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many coal beds contain microbial communities that can convert coal to natural gas (coalbed methane). Native microorganisms were obtained from Powder River Basin (PRB) coal seams with a diffusive microbial sampler placed downhole and used as an inoculum for enrichments with different nutrients to investigate microbially-enhanced coalbed methane production (MECoM). Coal-dependent methanogenesis more than doubled when yeast extract (YE) and several less complex components (proteins and amino acids) were added to the laboratory microcosms. Stimulated coal-dependent methanogenesis with peptone was 86% of that with YE while glutamate-stimulated activity was 65% of that with YE, and a vitamin mix had only 33% of the YE stimulated activity. For field application of MECoM, there is interest in identifying cost-effective alternatives to YE and other expensive nutrients. In laboratory studies, adding algal extract (AE) with lipids removed stimulated coal-dependent methanogenesis and the activity was 60% of that with YE at 27d and almost 90% of YE activity at 1406d. Analysis of British Thermal Unit (BTU) content of coal (a measure of potential energy yield) from long-term incubations indicated >99.5% of BTU content remained after coalbed methane (CBM) stimulation with either AE or YE. Thus, the coal resource remains largely unchanged following stimulated microbial methane production. Algal CBM stimulation could lead to technologies that utilize coupled biological systems (photosynthesis and methane production) that sustainably enhance CBM production and generate algal biofuels while also sequestering carbon dioxide (CO2). •Yeast extract and several less complex components stimulated coal-dependent methane production.•Algae extract stimulated coal-dependent methane production similarly to yeast extract.•Greater than 99.5% of coal BTU content remained after stimulation.
ISSN:0166-5162
1872-7840
DOI:10.1016/j.coal.2017.01.001