Porous Silicon Gradient Refractive Index Micro-Optics
The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and al...
Gespeichert in:
Veröffentlicht in: | Nano letters 2016-12, Vol.16 (12), p.7402-7407 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7407 |
---|---|
container_issue | 12 |
container_start_page | 7402 |
container_title | Nano letters |
container_volume | 16 |
creator | Krueger, Neil A Holsteen, Aaron L Kang, Seung-Kyun Ocier, Christian R Zhou, Weijun Mensing, Glennys Rogers, John A Brongersma, Mark L Braun, Paul V |
description | The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations. |
doi_str_mv | 10.1021/acs.nanolett.6b02939 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1388664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1834997771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a421t-eae7f0ccaea377e50b9efeeb901a893328ff47398f8b34657ec721aee874799c3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EoqXwBghFnLikeEli-4gQlEpFRSxny3HHwlWaFNtB8Pa46nLkNHP4_lk-hC4JHhNMya02YdzqtmsgxnFVYyqZPEJDUjKcV1LS40MvigE6C2GJMZasxKdoQDmXvKR0iMqXznd9yN5c40zXZhOvFw7amL2C9dpE9w3ZtF3AT_bsjO_y-To6E87RidVNgItdHaGPx4f3-6d8Np9M7-9muS4oiTlo4BYbo0EzzqHEtQQLUEtMtJCMUWFtwZkUVtSsqEoOhlOiAQQvuJSGjdD1dm4XolPBuAjmM53ZgomKMCGqqkjQzRZa--6rhxDVygUDTaNbSK8pIlghJeecJLTYoumVEDxYtfZupf2vIlhtrKpkVe2tqp3VFLvabejrFSwOob3GBOAtsIkvu963ycr_M_8AcYSGeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1834997771</pqid></control><display><type>article</type><title>Porous Silicon Gradient Refractive Index Micro-Optics</title><source>ACS Publications</source><creator>Krueger, Neil A ; Holsteen, Aaron L ; Kang, Seung-Kyun ; Ocier, Christian R ; Zhou, Weijun ; Mensing, Glennys ; Rogers, John A ; Brongersma, Mark L ; Braun, Paul V</creator><creatorcontrib>Krueger, Neil A ; Holsteen, Aaron L ; Kang, Seung-Kyun ; Ocier, Christian R ; Zhou, Weijun ; Mensing, Glennys ; Rogers, John A ; Brongersma, Mark L ; Braun, Paul V ; Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><description>The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b02939</identifier><identifier>PMID: 27797522</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE ; solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><ispartof>Nano letters, 2016-12, Vol.16 (12), p.7402-7407</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a421t-eae7f0ccaea377e50b9efeeb901a893328ff47398f8b34657ec721aee874799c3</citedby><cites>FETCH-LOGICAL-a421t-eae7f0ccaea377e50b9efeeb901a893328ff47398f8b34657ec721aee874799c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.6b02939$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.6b02939$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27797522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1388664$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krueger, Neil A</creatorcontrib><creatorcontrib>Holsteen, Aaron L</creatorcontrib><creatorcontrib>Kang, Seung-Kyun</creatorcontrib><creatorcontrib>Ocier, Christian R</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><creatorcontrib>Mensing, Glennys</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><creatorcontrib>Brongersma, Mark L</creatorcontrib><creatorcontrib>Braun, Paul V</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><title>Porous Silicon Gradient Refractive Index Micro-Optics</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.</description><subject>MATERIALS SCIENCE</subject><subject>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EoqXwBghFnLikeEli-4gQlEpFRSxny3HHwlWaFNtB8Pa46nLkNHP4_lk-hC4JHhNMya02YdzqtmsgxnFVYyqZPEJDUjKcV1LS40MvigE6C2GJMZasxKdoQDmXvKR0iMqXznd9yN5c40zXZhOvFw7amL2C9dpE9w3ZtF3AT_bsjO_y-To6E87RidVNgItdHaGPx4f3-6d8Np9M7-9muS4oiTlo4BYbo0EzzqHEtQQLUEtMtJCMUWFtwZkUVtSsqEoOhlOiAQQvuJSGjdD1dm4XolPBuAjmM53ZgomKMCGqqkjQzRZa--6rhxDVygUDTaNbSK8pIlghJeecJLTYoumVEDxYtfZupf2vIlhtrKpkVe2tqp3VFLvabejrFSwOob3GBOAtsIkvu963ycr_M_8AcYSGeQ</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Krueger, Neil A</creator><creator>Holsteen, Aaron L</creator><creator>Kang, Seung-Kyun</creator><creator>Ocier, Christian R</creator><creator>Zhou, Weijun</creator><creator>Mensing, Glennys</creator><creator>Rogers, John A</creator><creator>Brongersma, Mark L</creator><creator>Braun, Paul V</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20161214</creationdate><title>Porous Silicon Gradient Refractive Index Micro-Optics</title><author>Krueger, Neil A ; Holsteen, Aaron L ; Kang, Seung-Kyun ; Ocier, Christian R ; Zhou, Weijun ; Mensing, Glennys ; Rogers, John A ; Brongersma, Mark L ; Braun, Paul V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a421t-eae7f0ccaea377e50b9efeeb901a893328ff47398f8b34657ec721aee874799c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATERIALS SCIENCE</topic><topic>solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krueger, Neil A</creatorcontrib><creatorcontrib>Holsteen, Aaron L</creatorcontrib><creatorcontrib>Kang, Seung-Kyun</creatorcontrib><creatorcontrib>Ocier, Christian R</creatorcontrib><creatorcontrib>Zhou, Weijun</creatorcontrib><creatorcontrib>Mensing, Glennys</creatorcontrib><creatorcontrib>Rogers, John A</creatorcontrib><creatorcontrib>Brongersma, Mark L</creatorcontrib><creatorcontrib>Braun, Paul V</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krueger, Neil A</au><au>Holsteen, Aaron L</au><au>Kang, Seung-Kyun</au><au>Ocier, Christian R</au><au>Zhou, Weijun</au><au>Mensing, Glennys</au><au>Rogers, John A</au><au>Brongersma, Mark L</au><au>Braun, Paul V</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Silicon Gradient Refractive Index Micro-Optics</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-12-14</date><risdate>2016</risdate><volume>16</volume><issue>12</issue><spage>7402</spage><epage>7407</epage><pages>7402-7407</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The emergence and growth of transformation optics over the past decade has revitalized interest in how a gradient refractive index (GRIN) can be used to control light propagation. Two-dimensional demonstrations with lithographically defined silicon (Si) have displayed the power of GRIN optics and also represent a promising opportunity for integrating compact optical elements within Si photonic integrated circuits. Here, we demonstrate the fabrication of three-dimensional Si-based GRIN micro-optics through the shape-defined formation of porous Si (PSi). Conventional microfabrication creates Si square microcolumns (SMCs) that can be electrochemically etched into PSi elements with nanoscale porosity along the shape-defined etching pathway, which imparts the geometry with structural birefringence. Free-space characterization of the transmitted intensity distribution through a homogeneously etched PSi SMC exhibits polarization splitting behavior resembling that of dielectric metasurfaces that require considerably more laborious fabrication. Coupled birefringence/GRIN effects are studied by way of PSi SMCs etched with a linear (increasing from edge to center) GRIN profile. The transmitted intensity distribution shows polarization-selective focusing behavior with one polarization focused to a diffraction-limited spot and the orthogonal polarization focused into two laterally displaced foci. Optical thickness-based analysis readily predicts the experimentally observed phenomena, which strongly match finite-element electromagnetic simulations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27797522</pmid><doi>10.1021/acs.nanolett.6b02939</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2016-12, Vol.16 (12), p.7402-7407 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1388664 |
source | ACS Publications |
subjects | MATERIALS SCIENCE solar (photovoltaic), solid state lighting, phonons, thermal conductivity, electrodes - solar, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) |
title | Porous Silicon Gradient Refractive Index Micro-Optics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Silicon%20Gradient%20Refractive%20Index%20Micro-Optics&rft.jtitle=Nano%20letters&rft.au=Krueger,%20Neil%20A&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Light-Material%20Interactions%20in%20Energy%20Conversion%20(LMI)&rft.date=2016-12-14&rft.volume=16&rft.issue=12&rft.spage=7402&rft.epage=7407&rft.pages=7402-7407&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b02939&rft_dat=%3Cproquest_osti_%3E1834997771%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1834997771&rft_id=info:pmid/27797522&rfr_iscdi=true |