Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes

In situ strain and stress measurements are performed on composite electrodes to monitor potential‐dependent stiffness changes in lithium manganese oxide (LiMn2O4). Lithium insertion and removal results in asynchronous strain and stress generation in the electrode. Electrochemical stiffness changes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2017-04, Vol.7 (7), p.np-n/a
Hauptverfasser: Çapraz, Ömer Özgür, Bassett, Kimberly L., Gewirth, Andrew A., Sottos, Nancy R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page np
container_title Advanced energy materials
container_volume 7
creator Çapraz, Ömer Özgür
Bassett, Kimberly L.
Gewirth, Andrew A.
Sottos, Nancy R.
description In situ strain and stress measurements are performed on composite electrodes to monitor potential‐dependent stiffness changes in lithium manganese oxide (LiMn2O4). Lithium insertion and removal results in asynchronous strain and stress generation in the electrode. Electrochemical stiffness changes are calculated by combining coordinated stress and strain measurements. The electrode experiences dramatic changes in electrochemical stiffness due to potential‐dependent Li+ ion intercalation mechanisms. The development of stress in the early stages of delithiation (at ≈3.95 V) due to a kinetic barrier at the electrode surface gives rise to stiffness changes in the electrode. Strain generation due to phase transformations reduces stiffness in the electrode at 4.17 V during delithiation and at 4.11 V during lithiation. During lithiation, stress generation due to Coulombic repulsions between occupied and incoming Li+ ions leads to stiffening of the electrode at 3.96 V. The electrode also experiences greater changes in stiffness during delithiation compared to lithiation. These changes in electrochemical stiffness provide insight into the interplay between mechanical and electrochemical properties which control electrode response to lithiation and delithiation. Electrochemical stiffness in LiMn2O4 reveals the dominating mechanical forces on the composite electrode during Li+ ion intercalation. The electrode experiences stiffness due to kinetic barriers at the surface, phase transitions, Coulombic repulsions between Li+ ions in the material, and lattice relaxation. Stiffness reveals distinct mechanical deformations during delithiation versus lithiation.
doi_str_mv 10.1002/aenm.201601778
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1388309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1942670567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4468-46061971bc393dc31ac7bc633e5a65477595b4da4090743193f2408359c32dc13</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EElXpyhzBwtJy_ogdj1VVClJLB2C2XMchrvJR4kTQf4-rVEViAC9n3T3v6e5ehK4xTDAAude2KicEMAcsRHKGBphjNuYJg_PTn5JLNPJ-C-ExiYHSAVrMC2vapja5LZ3RRfTSuiyrrPfRLNfVu_WRq6Kla3PXldEqZHQo2mj95VIbHcWp9VfoItOFt6NjHKK3h_nr7HG8XC-eZtPl2DDGkzHjwLEUeGOopKmhWBuxMZxSG2seMyFiGW9YqhlIEIxiSTPCIKGxNJSkBtMhuun71r51yhvXWpObuqrCIArTJKEgA3TXQ7um_uisb1XpvLFFEWavO6-wBEaAYUoCevsL3dZdU4UVAsUIFxBz8SeVhBvHAiQL1KSnTFN739hM7RpX6mavMKiDS-rgkjq5FASyF3y6wu7_odV0_rz60X4DxTWR6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884057094</pqid></control><display><type>article</type><title>Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Çapraz, Ömer Özgür ; Bassett, Kimberly L. ; Gewirth, Andrew A. ; Sottos, Nancy R.</creator><creatorcontrib>Çapraz, Ömer Özgür ; Bassett, Kimberly L. ; Gewirth, Andrew A. ; Sottos, Nancy R. ; Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><description>In situ strain and stress measurements are performed on composite electrodes to monitor potential‐dependent stiffness changes in lithium manganese oxide (LiMn2O4). Lithium insertion and removal results in asynchronous strain and stress generation in the electrode. Electrochemical stiffness changes are calculated by combining coordinated stress and strain measurements. The electrode experiences dramatic changes in electrochemical stiffness due to potential‐dependent Li+ ion intercalation mechanisms. The development of stress in the early stages of delithiation (at ≈3.95 V) due to a kinetic barrier at the electrode surface gives rise to stiffness changes in the electrode. Strain generation due to phase transformations reduces stiffness in the electrode at 4.17 V during delithiation and at 4.11 V during lithiation. During lithiation, stress generation due to Coulombic repulsions between occupied and incoming Li+ ions leads to stiffening of the electrode at 3.96 V. The electrode also experiences greater changes in stiffness during delithiation compared to lithiation. These changes in electrochemical stiffness provide insight into the interplay between mechanical and electrochemical properties which control electrode response to lithiation and delithiation. Electrochemical stiffness in LiMn2O4 reveals the dominating mechanical forces on the composite electrode during Li+ ion intercalation. The electrode experiences stiffness due to kinetic barriers at the surface, phase transitions, Coulombic repulsions between Li+ ions in the material, and lattice relaxation. Stiffness reveals distinct mechanical deformations during delithiation versus lithiation.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201601778</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Barriers ; Electrochemical analysis ; electrochemical stiffness ; Electrodes ; energy storage (including batteries and capacitors), charge transport, materials and chemistry by design, synthesis (novel materials) ; Intercalation ; Lithium ; lithium manganese oxide ; Lithium manganese oxides ; Manganese oxides ; mechanical deformation ; Particulate composites ; Phase transitions ; Stiffening ; Stiffness ; Strain ; stress ; Stresses</subject><ispartof>Advanced energy materials, 2017-04, Vol.7 (7), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4468-46061971bc393dc31ac7bc633e5a65477595b4da4090743193f2408359c32dc13</citedby><cites>FETCH-LOGICAL-c4468-46061971bc393dc31ac7bc633e5a65477595b4da4090743193f2408359c32dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201601778$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201601778$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1388309$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Çapraz, Ömer Özgür</creatorcontrib><creatorcontrib>Bassett, Kimberly L.</creatorcontrib><creatorcontrib>Gewirth, Andrew A.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><title>Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes</title><title>Advanced energy materials</title><description>In situ strain and stress measurements are performed on composite electrodes to monitor potential‐dependent stiffness changes in lithium manganese oxide (LiMn2O4). Lithium insertion and removal results in asynchronous strain and stress generation in the electrode. Electrochemical stiffness changes are calculated by combining coordinated stress and strain measurements. The electrode experiences dramatic changes in electrochemical stiffness due to potential‐dependent Li+ ion intercalation mechanisms. The development of stress in the early stages of delithiation (at ≈3.95 V) due to a kinetic barrier at the electrode surface gives rise to stiffness changes in the electrode. Strain generation due to phase transformations reduces stiffness in the electrode at 4.17 V during delithiation and at 4.11 V during lithiation. During lithiation, stress generation due to Coulombic repulsions between occupied and incoming Li+ ions leads to stiffening of the electrode at 3.96 V. The electrode also experiences greater changes in stiffness during delithiation compared to lithiation. These changes in electrochemical stiffness provide insight into the interplay between mechanical and electrochemical properties which control electrode response to lithiation and delithiation. Electrochemical stiffness in LiMn2O4 reveals the dominating mechanical forces on the composite electrode during Li+ ion intercalation. The electrode experiences stiffness due to kinetic barriers at the surface, phase transitions, Coulombic repulsions between Li+ ions in the material, and lattice relaxation. Stiffness reveals distinct mechanical deformations during delithiation versus lithiation.</description><subject>Barriers</subject><subject>Electrochemical analysis</subject><subject>electrochemical stiffness</subject><subject>Electrodes</subject><subject>energy storage (including batteries and capacitors), charge transport, materials and chemistry by design, synthesis (novel materials)</subject><subject>Intercalation</subject><subject>Lithium</subject><subject>lithium manganese oxide</subject><subject>Lithium manganese oxides</subject><subject>Manganese oxides</subject><subject>mechanical deformation</subject><subject>Particulate composites</subject><subject>Phase transitions</subject><subject>Stiffening</subject><subject>Stiffness</subject><subject>Strain</subject><subject>stress</subject><subject>Stresses</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhi0EElXpyhzBwtJy_ogdj1VVClJLB2C2XMchrvJR4kTQf4-rVEViAC9n3T3v6e5ehK4xTDAAude2KicEMAcsRHKGBphjNuYJg_PTn5JLNPJ-C-ExiYHSAVrMC2vapja5LZ3RRfTSuiyrrPfRLNfVu_WRq6Kla3PXldEqZHQo2mj95VIbHcWp9VfoItOFt6NjHKK3h_nr7HG8XC-eZtPl2DDGkzHjwLEUeGOopKmhWBuxMZxSG2seMyFiGW9YqhlIEIxiSTPCIKGxNJSkBtMhuun71r51yhvXWpObuqrCIArTJKEgA3TXQ7um_uisb1XpvLFFEWavO6-wBEaAYUoCevsL3dZdU4UVAsUIFxBz8SeVhBvHAiQL1KSnTFN739hM7RpX6mavMKiDS-rgkjq5FASyF3y6wu7_odV0_rz60X4DxTWR6Q</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Çapraz, Ömer Özgür</creator><creator>Bassett, Kimberly L.</creator><creator>Gewirth, Andrew A.</creator><creator>Sottos, Nancy R.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20170401</creationdate><title>Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes</title><author>Çapraz, Ömer Özgür ; Bassett, Kimberly L. ; Gewirth, Andrew A. ; Sottos, Nancy R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4468-46061971bc393dc31ac7bc633e5a65477595b4da4090743193f2408359c32dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Barriers</topic><topic>Electrochemical analysis</topic><topic>electrochemical stiffness</topic><topic>Electrodes</topic><topic>energy storage (including batteries and capacitors), charge transport, materials and chemistry by design, synthesis (novel materials)</topic><topic>Intercalation</topic><topic>Lithium</topic><topic>lithium manganese oxide</topic><topic>Lithium manganese oxides</topic><topic>Manganese oxides</topic><topic>mechanical deformation</topic><topic>Particulate composites</topic><topic>Phase transitions</topic><topic>Stiffening</topic><topic>Stiffness</topic><topic>Strain</topic><topic>stress</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çapraz, Ömer Özgür</creatorcontrib><creatorcontrib>Bassett, Kimberly L.</creatorcontrib><creatorcontrib>Gewirth, Andrew A.</creatorcontrib><creatorcontrib>Sottos, Nancy R.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çapraz, Ömer Özgür</au><au>Bassett, Kimberly L.</au><au>Gewirth, Andrew A.</au><au>Sottos, Nancy R.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Electrical Energy Storage (CEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes</atitle><jtitle>Advanced energy materials</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>7</volume><issue>7</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>In situ strain and stress measurements are performed on composite electrodes to monitor potential‐dependent stiffness changes in lithium manganese oxide (LiMn2O4). Lithium insertion and removal results in asynchronous strain and stress generation in the electrode. Electrochemical stiffness changes are calculated by combining coordinated stress and strain measurements. The electrode experiences dramatic changes in electrochemical stiffness due to potential‐dependent Li+ ion intercalation mechanisms. The development of stress in the early stages of delithiation (at ≈3.95 V) due to a kinetic barrier at the electrode surface gives rise to stiffness changes in the electrode. Strain generation due to phase transformations reduces stiffness in the electrode at 4.17 V during delithiation and at 4.11 V during lithiation. During lithiation, stress generation due to Coulombic repulsions between occupied and incoming Li+ ions leads to stiffening of the electrode at 3.96 V. The electrode also experiences greater changes in stiffness during delithiation compared to lithiation. These changes in electrochemical stiffness provide insight into the interplay between mechanical and electrochemical properties which control electrode response to lithiation and delithiation. Electrochemical stiffness in LiMn2O4 reveals the dominating mechanical forces on the composite electrode during Li+ ion intercalation. The electrode experiences stiffness due to kinetic barriers at the surface, phase transitions, Coulombic repulsions between Li+ ions in the material, and lattice relaxation. Stiffness reveals distinct mechanical deformations during delithiation versus lithiation.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201601778</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2017-04, Vol.7 (7), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1388309
source Wiley Online Library Journals Frontfile Complete
subjects Barriers
Electrochemical analysis
electrochemical stiffness
Electrodes
energy storage (including batteries and capacitors), charge transport, materials and chemistry by design, synthesis (novel materials)
Intercalation
Lithium
lithium manganese oxide
Lithium manganese oxides
Manganese oxides
mechanical deformation
Particulate composites
Phase transitions
Stiffening
Stiffness
Strain
stress
Stresses
title Electrochemical Stiffness Changes in Lithium Manganese Oxide Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Stiffness%20Changes%20in%20Lithium%20Manganese%20Oxide%20Electrodes&rft.jtitle=Advanced%20energy%20materials&rft.au=%C3%87apraz,%20%C3%96mer%20%C3%96zg%C3%BCr&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Electrical%20Energy%20Storage%20(CEES)&rft.date=2017-04-01&rft.volume=7&rft.issue=7&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201601778&rft_dat=%3Cproquest_osti_%3E1942670567%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884057094&rft_id=info:pmid/&rfr_iscdi=true