Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels
In nature, nitrogen fixation is one of the most important life processes and occurs primarily in microbial organisms containing enzymes called nitrogenases. These complex proteins contain two distinct subunits with different active sites, with the primary N2 binding site being a FeMoS core cluster t...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-02, Vol.137 (5), p.2030-2034 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2034 |
---|---|
container_issue | 5 |
container_start_page | 2030 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Banerjee, Abhishek Yuhas, Benjamin D Margulies, Eric A Zhang, Yongbo Shim, Yurina Wasielewski, Michael R Kanatzidis, Mercouri G |
description | In nature, nitrogen fixation is one of the most important life processes and occurs primarily in microbial organisms containing enzymes called nitrogenases. These complex proteins contain two distinct subunits with different active sites, with the primary N2 binding site being a FeMoS core cluster that can be reduced by other nearby iron–sulfur clusters. Although nitrogen reduction to ammonia in biology does not require the absorption of light, there is considerable interest in developing catalyst materials that could drive the formation of ammonia from nitrogen photochemically. Here, we report that chalcogels containing FeMoS inorganic clusters are capable of photochemically reducing N2 to NH3 under white light irradiation, in aqueous media, under ambient pressure and room temperature. The chalcogels are composed of [Mo2Fe6S8(SPh)3]3+ and [Sn2S6]4– clusters in solution and have strong optical absorption, high surface area, and good aqueous stability. Our results demonstrate that light-driven nitrogen conversion to ammonia by MoFe sulfides is a viable process with implications in solar energy utilization and our understanding of primordial processes on earth. |
doi_str_mv | 10.1021/ja512491v |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1386531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1654702660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-b02cd944aee755f1a038bd43e431a35f37b3e9a64cdbd1b7c9b48bdda42db58d3</originalsourceid><addsrcrecordid>eNpt0MlKBDEQBuAgio7LwReQRhD00Jq1l6MMbuAGKngLWWrsDN2JdjKKb29k1JOnqqI-_sOP0C7BxwRTcjJXglDekvcVNCGC4jKf1SqaYIxpWTcV20CbMc7zyWlD1tEGFaLFlLUT9HzfhRRMB4Mzqi9uXRrDC_hiGvw7jNEFX6RQnA5D8E4VzudVO_DpG1iX8j8WHy51xTnchIdy2qne5IA-bqO1meoj7PzMLfR0fvY4vSyv7y6upqfXpWJ1m0qNqbEt5wqgFmJGFGaNtpwBZ0QxMWO1ZtCqihurLdG1aTXPwCpOrRaNZVtof5kbYnIyGpfAdCZ4DyZJwppKMJLR4RK9juFtATHJwUUDfa88hEWUpBK8xrSqcKZHS2rGEOMIM_k6ukGNn5Jg-d22_Gs7272f2IUewP7J33ozOFgCZaKch8XocxX_BH0BlDqGcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654702660</pqid></control><display><type>article</type><title>Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Banerjee, Abhishek ; Yuhas, Benjamin D ; Margulies, Eric A ; Zhang, Yongbo ; Shim, Yurina ; Wasielewski, Michael R ; Kanatzidis, Mercouri G</creator><creatorcontrib>Banerjee, Abhishek ; Yuhas, Benjamin D ; Margulies, Eric A ; Zhang, Yongbo ; Shim, Yurina ; Wasielewski, Michael R ; Kanatzidis, Mercouri G ; Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><description>In nature, nitrogen fixation is one of the most important life processes and occurs primarily in microbial organisms containing enzymes called nitrogenases. These complex proteins contain two distinct subunits with different active sites, with the primary N2 binding site being a FeMoS core cluster that can be reduced by other nearby iron–sulfur clusters. Although nitrogen reduction to ammonia in biology does not require the absorption of light, there is considerable interest in developing catalyst materials that could drive the formation of ammonia from nitrogen photochemically. Here, we report that chalcogels containing FeMoS inorganic clusters are capable of photochemically reducing N2 to NH3 under white light irradiation, in aqueous media, under ambient pressure and room temperature. The chalcogels are composed of [Mo2Fe6S8(SPh)3]3+ and [Sn2S6]4– clusters in solution and have strong optical absorption, high surface area, and good aqueous stability. Our results demonstrate that light-driven nitrogen conversion to ammonia by MoFe sulfides is a viable process with implications in solar energy utilization and our understanding of primordial processes on earth.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja512491v</identifier><identifier>PMID: 25590239</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Ammonia - chemistry ; Biomimetic Materials - chemistry ; catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) ; Ligands ; Models, Molecular ; Molecular Conformation ; Nitrogen - chemistry ; Nitrogenase - metabolism ; Photochemical Processes ; Sulfur Compounds - chemistry</subject><ispartof>Journal of the American Chemical Society, 2015-02, Vol.137 (5), p.2030-2034</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-b02cd944aee755f1a038bd43e431a35f37b3e9a64cdbd1b7c9b48bdda42db58d3</citedby><cites>FETCH-LOGICAL-a379t-b02cd944aee755f1a038bd43e431a35f37b3e9a64cdbd1b7c9b48bdda42db58d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja512491v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja512491v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25590239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1386531$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Banerjee, Abhishek</creatorcontrib><creatorcontrib>Yuhas, Benjamin D</creatorcontrib><creatorcontrib>Margulies, Eric A</creatorcontrib><creatorcontrib>Zhang, Yongbo</creatorcontrib><creatorcontrib>Shim, Yurina</creatorcontrib><creatorcontrib>Wasielewski, Michael R</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><title>Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In nature, nitrogen fixation is one of the most important life processes and occurs primarily in microbial organisms containing enzymes called nitrogenases. These complex proteins contain two distinct subunits with different active sites, with the primary N2 binding site being a FeMoS core cluster that can be reduced by other nearby iron–sulfur clusters. Although nitrogen reduction to ammonia in biology does not require the absorption of light, there is considerable interest in developing catalyst materials that could drive the formation of ammonia from nitrogen photochemically. Here, we report that chalcogels containing FeMoS inorganic clusters are capable of photochemically reducing N2 to NH3 under white light irradiation, in aqueous media, under ambient pressure and room temperature. The chalcogels are composed of [Mo2Fe6S8(SPh)3]3+ and [Sn2S6]4– clusters in solution and have strong optical absorption, high surface area, and good aqueous stability. Our results demonstrate that light-driven nitrogen conversion to ammonia by MoFe sulfides is a viable process with implications in solar energy utilization and our understanding of primordial processes on earth.</description><subject>Ammonia - chemistry</subject><subject>Biomimetic Materials - chemistry</subject><subject>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogenase - metabolism</subject><subject>Photochemical Processes</subject><subject>Sulfur Compounds - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MlKBDEQBuAgio7LwReQRhD00Jq1l6MMbuAGKngLWWrsDN2JdjKKb29k1JOnqqI-_sOP0C7BxwRTcjJXglDekvcVNCGC4jKf1SqaYIxpWTcV20CbMc7zyWlD1tEGFaLFlLUT9HzfhRRMB4Mzqi9uXRrDC_hiGvw7jNEFX6RQnA5D8E4VzudVO_DpG1iX8j8WHy51xTnchIdy2qne5IA-bqO1meoj7PzMLfR0fvY4vSyv7y6upqfXpWJ1m0qNqbEt5wqgFmJGFGaNtpwBZ0QxMWO1ZtCqihurLdG1aTXPwCpOrRaNZVtof5kbYnIyGpfAdCZ4DyZJwppKMJLR4RK9juFtATHJwUUDfa88hEWUpBK8xrSqcKZHS2rGEOMIM_k6ukGNn5Jg-d22_Gs7272f2IUewP7J33ozOFgCZaKch8XocxX_BH0BlDqGcA</recordid><startdate>20150211</startdate><enddate>20150211</enddate><creator>Banerjee, Abhishek</creator><creator>Yuhas, Benjamin D</creator><creator>Margulies, Eric A</creator><creator>Zhang, Yongbo</creator><creator>Shim, Yurina</creator><creator>Wasielewski, Michael R</creator><creator>Kanatzidis, Mercouri G</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150211</creationdate><title>Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels</title><author>Banerjee, Abhishek ; Yuhas, Benjamin D ; Margulies, Eric A ; Zhang, Yongbo ; Shim, Yurina ; Wasielewski, Michael R ; Kanatzidis, Mercouri G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-b02cd944aee755f1a038bd43e431a35f37b3e9a64cdbd1b7c9b48bdda42db58d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ammonia - chemistry</topic><topic>Biomimetic Materials - chemistry</topic><topic>catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogenase - metabolism</topic><topic>Photochemical Processes</topic><topic>Sulfur Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Abhishek</creatorcontrib><creatorcontrib>Yuhas, Benjamin D</creatorcontrib><creatorcontrib>Margulies, Eric A</creatorcontrib><creatorcontrib>Zhang, Yongbo</creatorcontrib><creatorcontrib>Shim, Yurina</creatorcontrib><creatorcontrib>Wasielewski, Michael R</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Abhishek</au><au>Yuhas, Benjamin D</au><au>Margulies, Eric A</au><au>Zhang, Yongbo</au><au>Shim, Yurina</au><au>Wasielewski, Michael R</au><au>Kanatzidis, Mercouri G</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-02-11</date><risdate>2015</risdate><volume>137</volume><issue>5</issue><spage>2030</spage><epage>2034</epage><pages>2030-2034</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>In nature, nitrogen fixation is one of the most important life processes and occurs primarily in microbial organisms containing enzymes called nitrogenases. These complex proteins contain two distinct subunits with different active sites, with the primary N2 binding site being a FeMoS core cluster that can be reduced by other nearby iron–sulfur clusters. Although nitrogen reduction to ammonia in biology does not require the absorption of light, there is considerable interest in developing catalyst materials that could drive the formation of ammonia from nitrogen photochemically. Here, we report that chalcogels containing FeMoS inorganic clusters are capable of photochemically reducing N2 to NH3 under white light irradiation, in aqueous media, under ambient pressure and room temperature. The chalcogels are composed of [Mo2Fe6S8(SPh)3]3+ and [Sn2S6]4– clusters in solution and have strong optical absorption, high surface area, and good aqueous stability. Our results demonstrate that light-driven nitrogen conversion to ammonia by MoFe sulfides is a viable process with implications in solar energy utilization and our understanding of primordial processes on earth.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25590239</pmid><doi>10.1021/ja512491v</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-02, Vol.137 (5), p.2030-2034 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1386531 |
source | MEDLINE; American Chemical Society Journals |
subjects | Ammonia - chemistry Biomimetic Materials - chemistry catalysis (homogeneous), catalysis (heterogeneous), solar (photovoltaic), solar (fuels), photosynthesis (natural and artificial), bio-inspired, hydrogen and fuel cells, electrodes - solar, defects, charge transport, spin dynamics, membrane, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly) Ligands Models, Molecular Molecular Conformation Nitrogen - chemistry Nitrogenase - metabolism Photochemical Processes Sulfur Compounds - chemistry |
title | Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photochemical%20Nitrogen%20Conversion%20to%20Ammonia%20in%20Ambient%20Conditions%20with%20FeMoS-Chalcogels&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Banerjee,%20Abhishek&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Argonne-Northwestern%20Solar%20Energy%20Research%20Center%20(ANSER)&rft.date=2015-02-11&rft.volume=137&rft.issue=5&rft.spage=2030&rft.epage=2034&rft.pages=2030-2034&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja512491v&rft_dat=%3Cproquest_osti_%3E1654702660%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654702660&rft_id=info:pmid/25590239&rfr_iscdi=true |