Disrupted Attosecond Charge Carrier Delocalization at a Hybrid Organic/Inorganic Semiconductor Interface
Despite significant interest in hybrid organic/inorganic semiconductor interfaces, little is known regarding the fate of charge carriers at metal oxide interfaces, particularly on ultrafast time scales. Using core–hole clock spectroscopy, we investigate the ultrafast charge carrier dynamics of condu...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2015-05, Vol.6 (10), p.1935-1941 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1941 |
---|---|
container_issue | 10 |
container_start_page | 1935 |
container_title | The journal of physical chemistry letters |
container_volume | 6 |
creator | Racke, David A Kelly, Leah L Kim, Hyungchul Schulz, Philip Sigdel, Ajaya Berry, Joseph J Graham, Samuel Nordlund, Dennis Monti, Oliver L. A |
description | Despite significant interest in hybrid organic/inorganic semiconductor interfaces, little is known regarding the fate of charge carriers at metal oxide interfaces, particularly on ultrafast time scales. Using core–hole clock spectroscopy, we investigate the ultrafast charge carrier dynamics of conductive ZnO films at a hybrid interface with an organic semiconductor. The adsorption of C60 on the ZnO surface strongly suppresses the ultrafast carrier delocalization and increases the charge carrier residence time from 400 attoseconds to nearly 30 fs. Here, we show that a new hybridized interfacial density of states with substantial molecular character is formed, fundamentally altering the observed carrier dynamics. The remarkable change in the dynamics sheds light on the fate of carriers at hybrid organic/inorganic semiconductor interfaces relevant to organic optoelectronics and provides for the first time an atomistic picture of the electronically perturbed near-interface region of a metal oxide. |
doi_str_mv | 10.1021/acs.jpclett.5b00787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1385427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703718414</sourcerecordid><originalsourceid>FETCH-LOGICAL-a287t-ad0d41334c25aab1a91de25dd9c0381ab55a643cd967de178078274d09410f593</originalsourceid><addsrcrecordid>eNp9kUFPGzEQhS1URCDtL0CqrJ56SWKvvevdY5S0EAmJA3C2Zu0JMdqsU9t7CL--hg1VT5w8h--98bxHyDVnc84KvgAT5y8H02FK87JlTNXqjFzyRtYzxevyy3_zhFzF-MJY1bBaXZBJURWVKJS4JLu1i2E4JLR0mZKPaHxv6WoH4RnpCkJwGOgaO2-gc6-QnO8pJAr09tgGZ-l9eIbemcWm9-NEH3Dv3kwGk3ygmz5h2ILBr-R8C13Eb6d3Sp5-_3pc3c7u7m82q-XdDIpapRlYZiUXQpqiBGg5NNxiUVrbGCZqDm1ZQiWFsU2lLHJV57MLJS1rJGfbshFT8mP09TE5HY1LaHb5Pz2apLmoS5nvnpKfI3QI_s-AMem9iwa7Dnr0Q9RcMZFzk1xmVIyoCT7GgFt9CG4P4ag502896NyDPvWgTz1k1ffTgqHdo_2n-Qg-A4sReFf7IfQ5lE8t_wLi9pdC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703718414</pqid></control><display><type>article</type><title>Disrupted Attosecond Charge Carrier Delocalization at a Hybrid Organic/Inorganic Semiconductor Interface</title><source>American Chemical Society Journals</source><creator>Racke, David A ; Kelly, Leah L ; Kim, Hyungchul ; Schulz, Philip ; Sigdel, Ajaya ; Berry, Joseph J ; Graham, Samuel ; Nordlund, Dennis ; Monti, Oliver L. A</creator><creatorcontrib>Racke, David A ; Kelly, Leah L ; Kim, Hyungchul ; Schulz, Philip ; Sigdel, Ajaya ; Berry, Joseph J ; Graham, Samuel ; Nordlund, Dennis ; Monti, Oliver L. A ; Energy Frontier Research Centers (EFRC) (United States). Center for Interface Science: Solar Electric Materials (CISSEM)</creatorcontrib><description>Despite significant interest in hybrid organic/inorganic semiconductor interfaces, little is known regarding the fate of charge carriers at metal oxide interfaces, particularly on ultrafast time scales. Using core–hole clock spectroscopy, we investigate the ultrafast charge carrier dynamics of conductive ZnO films at a hybrid interface with an organic semiconductor. The adsorption of C60 on the ZnO surface strongly suppresses the ultrafast carrier delocalization and increases the charge carrier residence time from 400 attoseconds to nearly 30 fs. Here, we show that a new hybridized interfacial density of states with substantial molecular character is formed, fundamentally altering the observed carrier dynamics. The remarkable change in the dynamics sheds light on the fate of carriers at hybrid organic/inorganic semiconductor interfaces relevant to organic optoelectronics and provides for the first time an atomistic picture of the electronically perturbed near-interface region of a metal oxide.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b00787</identifier><identifier>PMID: 26263273</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>solar (photovoltaic), electrodes - solar, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>The journal of physical chemistry letters, 2015-05, Vol.6 (10), p.1935-1941</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a287t-ad0d41334c25aab1a91de25dd9c0381ab55a643cd967de178078274d09410f593</citedby><cites>FETCH-LOGICAL-a287t-ad0d41334c25aab1a91de25dd9c0381ab55a643cd967de178078274d09410f593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b00787$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.5b00787$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26263273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1385427$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Racke, David A</creatorcontrib><creatorcontrib>Kelly, Leah L</creatorcontrib><creatorcontrib>Kim, Hyungchul</creatorcontrib><creatorcontrib>Schulz, Philip</creatorcontrib><creatorcontrib>Sigdel, Ajaya</creatorcontrib><creatorcontrib>Berry, Joseph J</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Monti, Oliver L. A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Interface Science: Solar Electric Materials (CISSEM)</creatorcontrib><title>Disrupted Attosecond Charge Carrier Delocalization at a Hybrid Organic/Inorganic Semiconductor Interface</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Despite significant interest in hybrid organic/inorganic semiconductor interfaces, little is known regarding the fate of charge carriers at metal oxide interfaces, particularly on ultrafast time scales. Using core–hole clock spectroscopy, we investigate the ultrafast charge carrier dynamics of conductive ZnO films at a hybrid interface with an organic semiconductor. The adsorption of C60 on the ZnO surface strongly suppresses the ultrafast carrier delocalization and increases the charge carrier residence time from 400 attoseconds to nearly 30 fs. Here, we show that a new hybridized interfacial density of states with substantial molecular character is formed, fundamentally altering the observed carrier dynamics. The remarkable change in the dynamics sheds light on the fate of carriers at hybrid organic/inorganic semiconductor interfaces relevant to organic optoelectronics and provides for the first time an atomistic picture of the electronically perturbed near-interface region of a metal oxide.</description><subject>solar (photovoltaic), electrodes - solar, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kUFPGzEQhS1URCDtL0CqrJ56SWKvvevdY5S0EAmJA3C2Zu0JMdqsU9t7CL--hg1VT5w8h--98bxHyDVnc84KvgAT5y8H02FK87JlTNXqjFzyRtYzxevyy3_zhFzF-MJY1bBaXZBJURWVKJS4JLu1i2E4JLR0mZKPaHxv6WoH4RnpCkJwGOgaO2-gc6-QnO8pJAr09tgGZ-l9eIbemcWm9-NEH3Dv3kwGk3ygmz5h2ILBr-R8C13Eb6d3Sp5-_3pc3c7u7m82q-XdDIpapRlYZiUXQpqiBGg5NNxiUVrbGCZqDm1ZQiWFsU2lLHJV57MLJS1rJGfbshFT8mP09TE5HY1LaHb5Pz2apLmoS5nvnpKfI3QI_s-AMem9iwa7Dnr0Q9RcMZFzk1xmVIyoCT7GgFt9CG4P4ag502896NyDPvWgTz1k1ffTgqHdo_2n-Qg-A4sReFf7IfQ5lE8t_wLi9pdC</recordid><startdate>20150521</startdate><enddate>20150521</enddate><creator>Racke, David A</creator><creator>Kelly, Leah L</creator><creator>Kim, Hyungchul</creator><creator>Schulz, Philip</creator><creator>Sigdel, Ajaya</creator><creator>Berry, Joseph J</creator><creator>Graham, Samuel</creator><creator>Nordlund, Dennis</creator><creator>Monti, Oliver L. A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150521</creationdate><title>Disrupted Attosecond Charge Carrier Delocalization at a Hybrid Organic/Inorganic Semiconductor Interface</title><author>Racke, David A ; Kelly, Leah L ; Kim, Hyungchul ; Schulz, Philip ; Sigdel, Ajaya ; Berry, Joseph J ; Graham, Samuel ; Nordlund, Dennis ; Monti, Oliver L. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a287t-ad0d41334c25aab1a91de25dd9c0381ab55a643cd967de178078274d09410f593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>solar (photovoltaic), electrodes - solar, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Racke, David A</creatorcontrib><creatorcontrib>Kelly, Leah L</creatorcontrib><creatorcontrib>Kim, Hyungchul</creatorcontrib><creatorcontrib>Schulz, Philip</creatorcontrib><creatorcontrib>Sigdel, Ajaya</creatorcontrib><creatorcontrib>Berry, Joseph J</creatorcontrib><creatorcontrib>Graham, Samuel</creatorcontrib><creatorcontrib>Nordlund, Dennis</creatorcontrib><creatorcontrib>Monti, Oliver L. A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Interface Science: Solar Electric Materials (CISSEM)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Racke, David A</au><au>Kelly, Leah L</au><au>Kim, Hyungchul</au><au>Schulz, Philip</au><au>Sigdel, Ajaya</au><au>Berry, Joseph J</au><au>Graham, Samuel</au><au>Nordlund, Dennis</au><au>Monti, Oliver L. A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Interface Science: Solar Electric Materials (CISSEM)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disrupted Attosecond Charge Carrier Delocalization at a Hybrid Organic/Inorganic Semiconductor Interface</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2015-05-21</date><risdate>2015</risdate><volume>6</volume><issue>10</issue><spage>1935</spage><epage>1941</epage><pages>1935-1941</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Despite significant interest in hybrid organic/inorganic semiconductor interfaces, little is known regarding the fate of charge carriers at metal oxide interfaces, particularly on ultrafast time scales. Using core–hole clock spectroscopy, we investigate the ultrafast charge carrier dynamics of conductive ZnO films at a hybrid interface with an organic semiconductor. The adsorption of C60 on the ZnO surface strongly suppresses the ultrafast carrier delocalization and increases the charge carrier residence time from 400 attoseconds to nearly 30 fs. Here, we show that a new hybridized interfacial density of states with substantial molecular character is formed, fundamentally altering the observed carrier dynamics. The remarkable change in the dynamics sheds light on the fate of carriers at hybrid organic/inorganic semiconductor interfaces relevant to organic optoelectronics and provides for the first time an atomistic picture of the electronically perturbed near-interface region of a metal oxide.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26263273</pmid><doi>10.1021/acs.jpclett.5b00787</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2015-05, Vol.6 (10), p.1935-1941 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_1385427 |
source | American Chemical Society Journals |
subjects | solar (photovoltaic), electrodes - solar, charge transport, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) |
title | Disrupted Attosecond Charge Carrier Delocalization at a Hybrid Organic/Inorganic Semiconductor Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disrupted%20Attosecond%20Charge%20Carrier%20Delocalization%20at%20a%20Hybrid%20Organic/Inorganic%20Semiconductor%20Interface&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Racke,%20David%20A&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Interface%20Science:%20Solar%20Electric%20Materials%20(CISSEM)&rft.date=2015-05-21&rft.volume=6&rft.issue=10&rft.spage=1935&rft.epage=1941&rft.pages=1935-1941&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b00787&rft_dat=%3Cproquest_osti_%3E1703718414%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703718414&rft_id=info:pmid/26263273&rfr_iscdi=true |