The role of nickel in radiation damage of ferritic alloys

According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2015-02, Vol.84 (C), p.368-374
Hauptverfasser: Osetsky, Y., Anento, N., Serra, A., Terentyev, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue C
container_start_page 368
container_title Acta materialia
container_volume 84
creator Osetsky, Y.
Anento, N.
Serra, A.
Terentyev, D.
description According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T
doi_str_mv 10.1016/j.actamat.2014.10.060
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1385404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660045026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</originalsourceid><addsrcrecordid>eNpFUctqwzAQFKWFpo9PKJieenG6kiXFPpbQFwR6Sc9iI68bpY6VSsohf1-5CfSw75lhYRi74zDlwPXjZoo24RbTVACXeTcFDWdswutZVQqpqvPcV6optVTykl3FuAHgYiZhwprlmorgeyp8VwzOflNfuKEI2DpMzg9Fm4W__q4dheCSswX2vT_EG3bRYR_p9lSv2efL83L-Vi4-Xt_nT4vSShCplHX-qUaRP-1aiR2h0lYpWTcClMWcm9WqWbXAK01S1GRboTOVeAeyQllds_ujro_JmWhdIru2fhjIJsOrWkkYQfwIsnFvTSBLwWIyHt3_MIaAmTBCcylE5jwcObvgf_YUk9m6aKnvcSC_j4ZrDSAVCJ2h6iQffIyBOrMLbovhYDiY0QOzMScPzOjBuM4eVL81yHoW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660045026</pqid></control><display><type>article</type><title>The role of nickel in radiation damage of ferritic alloys</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Osetsky, Y. ; Anento, N. ; Serra, A. ; Terentyev, D.</creator><creatorcontrib>Osetsky, Y. ; Anento, N. ; Serra, A. ; Terentyev, D. ; Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><description>According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T &lt;500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. This effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe-Ni ferritic alloys.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.10.060</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Alloying effects ; ALPHA-IRON ; ATOM CLUSTERS ; BCC IRON ; Binary systems ; Clusters ; Construccions metàl·liques ; COPPER ; Diffusion mechanism ; Dislocation loops ; Dislocations ; DISPLACEMENT CASCADES ; EMBRITTLEMENT ; Enginyeria civil ; FE-CR ALLOYS ; Fe-Ni alloys ; Ferrous alloys ; GLISSILE INTERSTITIAL CLUSTERS ; Iron |m Binary systems ; Materials i estructures ; Materials i estructures metàl·liques ; MODEL ALLOYS ; Neutron irradiation ; Nickel |m Binary systems ; nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design ; Radiation effects ; Structures and materials ; Swelling ; Àrees temàtiques de la UPC</subject><ispartof>Acta materialia, 2015-02, Vol.84 (C), p.368-374</ispartof><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</citedby><cites>FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,26951,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1385404$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osetsky, Y.</creatorcontrib><creatorcontrib>Anento, N.</creatorcontrib><creatorcontrib>Serra, A.</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><title>The role of nickel in radiation damage of ferritic alloys</title><title>Acta materialia</title><description>According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T &lt;500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. This effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe-Ni ferritic alloys.</description><subject>Alloying effects</subject><subject>ALPHA-IRON</subject><subject>ATOM CLUSTERS</subject><subject>BCC IRON</subject><subject>Binary systems</subject><subject>Clusters</subject><subject>Construccions metàl·liques</subject><subject>COPPER</subject><subject>Diffusion mechanism</subject><subject>Dislocation loops</subject><subject>Dislocations</subject><subject>DISPLACEMENT CASCADES</subject><subject>EMBRITTLEMENT</subject><subject>Enginyeria civil</subject><subject>FE-CR ALLOYS</subject><subject>Fe-Ni alloys</subject><subject>Ferrous alloys</subject><subject>GLISSILE INTERSTITIAL CLUSTERS</subject><subject>Iron |m Binary systems</subject><subject>Materials i estructures</subject><subject>Materials i estructures metàl·liques</subject><subject>MODEL ALLOYS</subject><subject>Neutron irradiation</subject><subject>Nickel |m Binary systems</subject><subject>nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design</subject><subject>Radiation effects</subject><subject>Structures and materials</subject><subject>Swelling</subject><subject>Àrees temàtiques de la UPC</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpFUctqwzAQFKWFpo9PKJieenG6kiXFPpbQFwR6Sc9iI68bpY6VSsohf1-5CfSw75lhYRi74zDlwPXjZoo24RbTVACXeTcFDWdswutZVQqpqvPcV6optVTykl3FuAHgYiZhwprlmorgeyp8VwzOflNfuKEI2DpMzg9Fm4W__q4dheCSswX2vT_EG3bRYR_p9lSv2efL83L-Vi4-Xt_nT4vSShCplHX-qUaRP-1aiR2h0lYpWTcClMWcm9WqWbXAK01S1GRboTOVeAeyQllds_ujro_JmWhdIru2fhjIJsOrWkkYQfwIsnFvTSBLwWIyHt3_MIaAmTBCcylE5jwcObvgf_YUk9m6aKnvcSC_j4ZrDSAVCJ2h6iQffIyBOrMLbovhYDiY0QOzMScPzOjBuM4eVL81yHoW</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Osetsky, Y.</creator><creator>Anento, N.</creator><creator>Serra, A.</creator><creator>Terentyev, D.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>XX2</scope><scope>OTOTI</scope></search><sort><creationdate>201502</creationdate><title>The role of nickel in radiation damage of ferritic alloys</title><author>Osetsky, Y. ; Anento, N. ; Serra, A. ; Terentyev, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloying effects</topic><topic>ALPHA-IRON</topic><topic>ATOM CLUSTERS</topic><topic>BCC IRON</topic><topic>Binary systems</topic><topic>Clusters</topic><topic>Construccions metàl·liques</topic><topic>COPPER</topic><topic>Diffusion mechanism</topic><topic>Dislocation loops</topic><topic>Dislocations</topic><topic>DISPLACEMENT CASCADES</topic><topic>EMBRITTLEMENT</topic><topic>Enginyeria civil</topic><topic>FE-CR ALLOYS</topic><topic>Fe-Ni alloys</topic><topic>Ferrous alloys</topic><topic>GLISSILE INTERSTITIAL CLUSTERS</topic><topic>Iron |m Binary systems</topic><topic>Materials i estructures</topic><topic>Materials i estructures metàl·liques</topic><topic>MODEL ALLOYS</topic><topic>Neutron irradiation</topic><topic>Nickel |m Binary systems</topic><topic>nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design</topic><topic>Radiation effects</topic><topic>Structures and materials</topic><topic>Swelling</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osetsky, Y.</creatorcontrib><creatorcontrib>Anento, N.</creatorcontrib><creatorcontrib>Serra, A.</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Recercat</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osetsky, Y.</au><au>Anento, N.</au><au>Serra, A.</au><au>Terentyev, D.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of nickel in radiation damage of ferritic alloys</atitle><jtitle>Acta materialia</jtitle><date>2015-02</date><risdate>2015</risdate><volume>84</volume><issue>C</issue><spage>368</spage><epage>374</epage><pages>368-374</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T &lt;500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. This effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe-Ni ferritic alloys.</abstract><cop>United States</cop><pub>Elsevier</pub><doi>10.1016/j.actamat.2014.10.060</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2015-02, Vol.84 (C), p.368-374
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1385404
source Recercat; Elsevier ScienceDirect Journals
subjects Alloying effects
ALPHA-IRON
ATOM CLUSTERS
BCC IRON
Binary systems
Clusters
Construccions metàl·liques
COPPER
Diffusion mechanism
Dislocation loops
Dislocations
DISPLACEMENT CASCADES
EMBRITTLEMENT
Enginyeria civil
FE-CR ALLOYS
Fe-Ni alloys
Ferrous alloys
GLISSILE INTERSTITIAL CLUSTERS
Iron |m Binary systems
Materials i estructures
Materials i estructures metàl·liques
MODEL ALLOYS
Neutron irradiation
Nickel |m Binary systems
nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design
Radiation effects
Structures and materials
Swelling
Àrees temàtiques de la UPC
title The role of nickel in radiation damage of ferritic alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20nickel%20in%20radiation%20damage%20of%20ferritic%20alloys&rft.jtitle=Acta%20materialia&rft.au=Osetsky,%20Y.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Defect%20Physics%20in%20Structural%20Materials%20(CDP)&rft.date=2015-02&rft.volume=84&rft.issue=C&rft.spage=368&rft.epage=374&rft.pages=368-374&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.10.060&rft_dat=%3Cproquest_osti_%3E1660045026%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660045026&rft_id=info:pmid/&rfr_iscdi=true