The role of nickel in radiation damage of ferritic alloys
According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundari...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2015-02, Vol.84 (C), p.368-374 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 374 |
---|---|
container_issue | C |
container_start_page | 368 |
container_title | Acta materialia |
container_volume | 84 |
creator | Osetsky, Y. Anento, N. Serra, A. Terentyev, D. |
description | According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T |
doi_str_mv | 10.1016/j.actamat.2014.10.060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1385404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660045026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</originalsourceid><addsrcrecordid>eNpFUctqwzAQFKWFpo9PKJieenG6kiXFPpbQFwR6Sc9iI68bpY6VSsohf1-5CfSw75lhYRi74zDlwPXjZoo24RbTVACXeTcFDWdswutZVQqpqvPcV6optVTykl3FuAHgYiZhwprlmorgeyp8VwzOflNfuKEI2DpMzg9Fm4W__q4dheCSswX2vT_EG3bRYR_p9lSv2efL83L-Vi4-Xt_nT4vSShCplHX-qUaRP-1aiR2h0lYpWTcClMWcm9WqWbXAK01S1GRboTOVeAeyQllds_ujro_JmWhdIru2fhjIJsOrWkkYQfwIsnFvTSBLwWIyHt3_MIaAmTBCcylE5jwcObvgf_YUk9m6aKnvcSC_j4ZrDSAVCJ2h6iQffIyBOrMLbovhYDiY0QOzMScPzOjBuM4eVL81yHoW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660045026</pqid></control><display><type>article</type><title>The role of nickel in radiation damage of ferritic alloys</title><source>Recercat</source><source>Elsevier ScienceDirect Journals</source><creator>Osetsky, Y. ; Anento, N. ; Serra, A. ; Terentyev, D.</creator><creatorcontrib>Osetsky, Y. ; Anento, N. ; Serra, A. ; Terentyev, D. ; Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><description>According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T <500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. This effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe-Ni ferritic alloys.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.10.060</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Alloying effects ; ALPHA-IRON ; ATOM CLUSTERS ; BCC IRON ; Binary systems ; Clusters ; Construccions metàl·liques ; COPPER ; Diffusion mechanism ; Dislocation loops ; Dislocations ; DISPLACEMENT CASCADES ; EMBRITTLEMENT ; Enginyeria civil ; FE-CR ALLOYS ; Fe-Ni alloys ; Ferrous alloys ; GLISSILE INTERSTITIAL CLUSTERS ; Iron |m Binary systems ; Materials i estructures ; Materials i estructures metàl·liques ; MODEL ALLOYS ; Neutron irradiation ; Nickel |m Binary systems ; nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design ; Radiation effects ; Structures and materials ; Swelling ; Àrees temàtiques de la UPC</subject><ispartof>Acta materialia, 2015-02, Vol.84 (C), p.368-374</ispartof><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</citedby><cites>FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,26951,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1385404$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Osetsky, Y.</creatorcontrib><creatorcontrib>Anento, N.</creatorcontrib><creatorcontrib>Serra, A.</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><title>The role of nickel in radiation damage of ferritic alloys</title><title>Acta materialia</title><description>According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T <500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. This effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe-Ni ferritic alloys.</description><subject>Alloying effects</subject><subject>ALPHA-IRON</subject><subject>ATOM CLUSTERS</subject><subject>BCC IRON</subject><subject>Binary systems</subject><subject>Clusters</subject><subject>Construccions metàl·liques</subject><subject>COPPER</subject><subject>Diffusion mechanism</subject><subject>Dislocation loops</subject><subject>Dislocations</subject><subject>DISPLACEMENT CASCADES</subject><subject>EMBRITTLEMENT</subject><subject>Enginyeria civil</subject><subject>FE-CR ALLOYS</subject><subject>Fe-Ni alloys</subject><subject>Ferrous alloys</subject><subject>GLISSILE INTERSTITIAL CLUSTERS</subject><subject>Iron |m Binary systems</subject><subject>Materials i estructures</subject><subject>Materials i estructures metàl·liques</subject><subject>MODEL ALLOYS</subject><subject>Neutron irradiation</subject><subject>Nickel |m Binary systems</subject><subject>nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design</subject><subject>Radiation effects</subject><subject>Structures and materials</subject><subject>Swelling</subject><subject>Àrees temàtiques de la UPC</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNpFUctqwzAQFKWFpo9PKJieenG6kiXFPpbQFwR6Sc9iI68bpY6VSsohf1-5CfSw75lhYRi74zDlwPXjZoo24RbTVACXeTcFDWdswutZVQqpqvPcV6optVTykl3FuAHgYiZhwprlmorgeyp8VwzOflNfuKEI2DpMzg9Fm4W__q4dheCSswX2vT_EG3bRYR_p9lSv2efL83L-Vi4-Xt_nT4vSShCplHX-qUaRP-1aiR2h0lYpWTcClMWcm9WqWbXAK01S1GRboTOVeAeyQllds_ujro_JmWhdIru2fhjIJsOrWkkYQfwIsnFvTSBLwWIyHt3_MIaAmTBCcylE5jwcObvgf_YUk9m6aKnvcSC_j4ZrDSAVCJ2h6iQffIyBOrMLbovhYDiY0QOzMScPzOjBuM4eVL81yHoW</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Osetsky, Y.</creator><creator>Anento, N.</creator><creator>Serra, A.</creator><creator>Terentyev, D.</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>XX2</scope><scope>OTOTI</scope></search><sort><creationdate>201502</creationdate><title>The role of nickel in radiation damage of ferritic alloys</title><author>Osetsky, Y. ; Anento, N. ; Serra, A. ; Terentyev, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-480148a2101fd4afea56c55489205ca9209bb9bd0136e428ecd26c40e1f043a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloying effects</topic><topic>ALPHA-IRON</topic><topic>ATOM CLUSTERS</topic><topic>BCC IRON</topic><topic>Binary systems</topic><topic>Clusters</topic><topic>Construccions metàl·liques</topic><topic>COPPER</topic><topic>Diffusion mechanism</topic><topic>Dislocation loops</topic><topic>Dislocations</topic><topic>DISPLACEMENT CASCADES</topic><topic>EMBRITTLEMENT</topic><topic>Enginyeria civil</topic><topic>FE-CR ALLOYS</topic><topic>Fe-Ni alloys</topic><topic>Ferrous alloys</topic><topic>GLISSILE INTERSTITIAL CLUSTERS</topic><topic>Iron |m Binary systems</topic><topic>Materials i estructures</topic><topic>Materials i estructures metàl·liques</topic><topic>MODEL ALLOYS</topic><topic>Neutron irradiation</topic><topic>Nickel |m Binary systems</topic><topic>nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design</topic><topic>Radiation effects</topic><topic>Structures and materials</topic><topic>Swelling</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osetsky, Y.</creatorcontrib><creatorcontrib>Anento, N.</creatorcontrib><creatorcontrib>Serra, A.</creatorcontrib><creatorcontrib>Terentyev, D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Recercat</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osetsky, Y.</au><au>Anento, N.</au><au>Serra, A.</au><au>Terentyev, D.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of nickel in radiation damage of ferritic alloys</atitle><jtitle>Acta materialia</jtitle><date>2015-02</date><risdate>2015</risdate><volume>84</volume><issue>C</issue><spage>368</spage><epage>374</epage><pages>368-374</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this paper we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe-Ni alloys. We have found that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1nm (37SIAs) cluster is practically immobile at T <500K in the Fe-0.8at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. This effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe-Ni ferritic alloys.</abstract><cop>United States</cop><pub>Elsevier</pub><doi>10.1016/j.actamat.2014.10.060</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2015-02, Vol.84 (C), p.368-374 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1385404 |
source | Recercat; Elsevier ScienceDirect Journals |
subjects | Alloying effects ALPHA-IRON ATOM CLUSTERS BCC IRON Binary systems Clusters Construccions metàl·liques COPPER Diffusion mechanism Dislocation loops Dislocations DISPLACEMENT CASCADES EMBRITTLEMENT Enginyeria civil FE-CR ALLOYS Fe-Ni alloys Ferrous alloys GLISSILE INTERSTITIAL CLUSTERS Iron |m Binary systems Materials i estructures Materials i estructures metàl·liques MODEL ALLOYS Neutron irradiation Nickel |m Binary systems nuclear (including radiation effects), defects, mechanical behavior, spin dynamics, materials and chemistry by design Radiation effects Structures and materials Swelling Àrees temàtiques de la UPC |
title | The role of nickel in radiation damage of ferritic alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20nickel%20in%20radiation%20damage%20of%20ferritic%20alloys&rft.jtitle=Acta%20materialia&rft.au=Osetsky,%20Y.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Defect%20Physics%20in%20Structural%20Materials%20(CDP)&rft.date=2015-02&rft.volume=84&rft.issue=C&rft.spage=368&rft.epage=374&rft.pages=368-374&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.10.060&rft_dat=%3Cproquest_osti_%3E1660045026%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660045026&rft_id=info:pmid/&rfr_iscdi=true |