Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks

For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (8), p.4248-4254
Hauptverfasser: Wu, D, McDonald, T M, Quan, Z, Ushakov, S V, Zhang, P, Long, J R, Navrotsky, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4254
container_issue 8
container_start_page 4248
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 3
creator Wu, D
McDonald, T M
Quan, Z
Ushakov, S V
Zhang, P
Long, J R
Navrotsky, A
description For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature.
doi_str_mv 10.1039/c4ta06496h
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1384824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669872709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</originalsourceid><addsrcrecordid>eNqNkbFOwzAYhCMEElXpwhNETAgpYMdJHI9VBRSpEkuZLcf5TU0Tu9iOIEy8A2_Ik2AoYuaWu__Xp1suSU4xusSIsCtZBIGqglWbg2SSoxJlNB6Hf7muj5OZ908oqkaoYmySNOsNuN62oxG9lqm0_a6DVx3G1KpUCtdYE20XBgepNqnotmMXSQOZGowM2hrR6Tdo0x6C6D7fP6x7FCY2KSd6eLFu60-SIyU6D7NfnyYPN9frxTJb3d_eLearTJIKh0wVmAjVYJoTpLAE1ULRsioXAkH8lVihuhayJLQomQKKUZODIgRj2kBDEZkmZ_te64PmXuoAciOtMSADx6Qu6ryI0Pke2jn7PIAPvNdeQtcJA3bwHFeUEMZYSf-BVqymOUUsohd7VDrrvQPFd073wo0cI_69DV8U6_nPNkvyBUxHg5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669872709</pqid></control><display><type>article</type><title>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, D ; McDonald, T M ; Quan, Z ; Ushakov, S V ; Zhang, P ; Long, J R ; Navrotsky, A</creator><creatorcontrib>Wu, D ; McDonald, T M ; Quan, Z ; Ushakov, S V ; Zhang, P ; Long, J R ; Navrotsky, A ; Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><description>For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c4ta06496h</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>Adsorbents ; Adsorption ; Calorimetry ; Carbon capture and storage ; Carbon dioxide ; Chemisorption ; Enthalpy ; Entropy ; membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Metal-organic frameworks ; Sustainability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (8), p.4248-4254</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</citedby><cites>FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1384824$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, D</creatorcontrib><creatorcontrib>McDonald, T M</creatorcontrib><creatorcontrib>Quan, Z</creatorcontrib><creatorcontrib>Ushakov, S V</creatorcontrib><creatorcontrib>Zhang, P</creatorcontrib><creatorcontrib>Long, J R</creatorcontrib><creatorcontrib>Navrotsky, A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><title>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Calorimetry</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Chemisorption</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Metal-organic frameworks</subject><subject>Sustainability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkbFOwzAYhCMEElXpwhNETAgpYMdJHI9VBRSpEkuZLcf5TU0Tu9iOIEy8A2_Ik2AoYuaWu__Xp1suSU4xusSIsCtZBIGqglWbg2SSoxJlNB6Hf7muj5OZ908oqkaoYmySNOsNuN62oxG9lqm0_a6DVx3G1KpUCtdYE20XBgepNqnotmMXSQOZGowM2hrR6Tdo0x6C6D7fP6x7FCY2KSd6eLFu60-SIyU6D7NfnyYPN9frxTJb3d_eLearTJIKh0wVmAjVYJoTpLAE1ULRsioXAkH8lVihuhayJLQomQKKUZODIgRj2kBDEZkmZ_te64PmXuoAciOtMSADx6Qu6ryI0Pke2jn7PIAPvNdeQtcJA3bwHFeUEMZYSf-BVqymOUUsohd7VDrrvQPFd073wo0cI_69DV8U6_nPNkvyBUxHg5U</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wu, D</creator><creator>McDonald, T M</creator><creator>Quan, Z</creator><creator>Ushakov, S V</creator><creator>Zhang, P</creator><creator>Long, J R</creator><creator>Navrotsky, A</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</title><author>Wu, D ; McDonald, T M ; Quan, Z ; Ushakov, S V ; Zhang, P ; Long, J R ; Navrotsky, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Calorimetry</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Chemisorption</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Metal-organic frameworks</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, D</creatorcontrib><creatorcontrib>McDonald, T M</creatorcontrib><creatorcontrib>Quan, Z</creatorcontrib><creatorcontrib>Ushakov, S V</creatorcontrib><creatorcontrib>Zhang, P</creatorcontrib><creatorcontrib>Long, J R</creatorcontrib><creatorcontrib>Navrotsky, A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, D</au><au>McDonald, T M</au><au>Quan, Z</au><au>Ushakov, S V</au><au>Zhang, P</au><au>Long, J R</au><au>Navrotsky, A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><issue>8</issue><spage>4248</spage><epage>4254</epage><pages>4248-4254</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c4ta06496h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (8), p.4248-4254
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_1384824
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorbents
Adsorption
Calorimetry
Carbon capture and storage
Carbon dioxide
Chemisorption
Enthalpy
Entropy
membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Metal-organic frameworks
Sustainability
title Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20complexity%20of%20carbon%20capture%20in%20alkylamine-functionalized%20metal%E2%80%93organic%20frameworks&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wu,%20D&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Gas%20Separations%20Relevant%20to%20Clean%20Energy%20Technologies%20(CGS)&rft.date=2015-01-01&rft.volume=3&rft.issue=8&rft.spage=4248&rft.epage=4254&rft.pages=4248-4254&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c4ta06496h&rft_dat=%3Cproquest_osti_%3E1669872709%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669872709&rft_id=info:pmid/&rfr_iscdi=true