Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks
For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-M...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2015-01, Vol.3 (8), p.4248-4254 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4254 |
---|---|
container_issue | 8 |
container_start_page | 4248 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 3 |
creator | Wu, D McDonald, T M Quan, Z Ushakov, S V Zhang, P Long, J R Navrotsky, A |
description | For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature. |
doi_str_mv | 10.1039/c4ta06496h |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1384824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669872709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</originalsourceid><addsrcrecordid>eNqNkbFOwzAYhCMEElXpwhNETAgpYMdJHI9VBRSpEkuZLcf5TU0Tu9iOIEy8A2_Ik2AoYuaWu__Xp1suSU4xusSIsCtZBIGqglWbg2SSoxJlNB6Hf7muj5OZ908oqkaoYmySNOsNuN62oxG9lqm0_a6DVx3G1KpUCtdYE20XBgepNqnotmMXSQOZGowM2hrR6Tdo0x6C6D7fP6x7FCY2KSd6eLFu60-SIyU6D7NfnyYPN9frxTJb3d_eLearTJIKh0wVmAjVYJoTpLAE1ULRsioXAkH8lVihuhayJLQomQKKUZODIgRj2kBDEZkmZ_te64PmXuoAciOtMSADx6Qu6ryI0Pke2jn7PIAPvNdeQtcJA3bwHFeUEMZYSf-BVqymOUUsohd7VDrrvQPFd073wo0cI_69DV8U6_nPNkvyBUxHg5U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669872709</pqid></control><display><type>article</type><title>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wu, D ; McDonald, T M ; Quan, Z ; Ushakov, S V ; Zhang, P ; Long, J R ; Navrotsky, A</creator><creatorcontrib>Wu, D ; McDonald, T M ; Quan, Z ; Ushakov, S V ; Zhang, P ; Long, J R ; Navrotsky, A ; Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><description>For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c4ta06496h</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>Adsorbents ; Adsorption ; Calorimetry ; Carbon capture and storage ; Carbon dioxide ; Chemisorption ; Enthalpy ; Entropy ; membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) ; Metal-organic frameworks ; Sustainability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (8), p.4248-4254</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</citedby><cites>FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1384824$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, D</creatorcontrib><creatorcontrib>McDonald, T M</creatorcontrib><creatorcontrib>Quan, Z</creatorcontrib><creatorcontrib>Ushakov, S V</creatorcontrib><creatorcontrib>Zhang, P</creatorcontrib><creatorcontrib>Long, J R</creatorcontrib><creatorcontrib>Navrotsky, A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><title>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Calorimetry</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Chemisorption</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><subject>Metal-organic frameworks</subject><subject>Sustainability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkbFOwzAYhCMEElXpwhNETAgpYMdJHI9VBRSpEkuZLcf5TU0Tu9iOIEy8A2_Ik2AoYuaWu__Xp1suSU4xusSIsCtZBIGqglWbg2SSoxJlNB6Hf7muj5OZ908oqkaoYmySNOsNuN62oxG9lqm0_a6DVx3G1KpUCtdYE20XBgepNqnotmMXSQOZGowM2hrR6Tdo0x6C6D7fP6x7FCY2KSd6eLFu60-SIyU6D7NfnyYPN9frxTJb3d_eLearTJIKh0wVmAjVYJoTpLAE1ULRsioXAkH8lVihuhayJLQomQKKUZODIgRj2kBDEZkmZ_te64PmXuoAciOtMSADx6Qu6ryI0Pke2jn7PIAPvNdeQtcJA3bwHFeUEMZYSf-BVqymOUUsohd7VDrrvQPFd073wo0cI_69DV8U6_nPNkvyBUxHg5U</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Wu, D</creator><creator>McDonald, T M</creator><creator>Quan, Z</creator><creator>Ushakov, S V</creator><creator>Zhang, P</creator><creator>Long, J R</creator><creator>Navrotsky, A</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</title><author>Wu, D ; McDonald, T M ; Quan, Z ; Ushakov, S V ; Zhang, P ; Long, J R ; Navrotsky, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f413afb17230f1cefde4d962aa0e72351f088ac537459fe710b2ef33117beb703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Calorimetry</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Chemisorption</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><topic>Metal-organic frameworks</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, D</creatorcontrib><creatorcontrib>McDonald, T M</creatorcontrib><creatorcontrib>Quan, Z</creatorcontrib><creatorcontrib>Ushakov, S V</creatorcontrib><creatorcontrib>Zhang, P</creatorcontrib><creatorcontrib>Long, J R</creatorcontrib><creatorcontrib>Navrotsky, A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, D</au><au>McDonald, T M</au><au>Quan, Z</au><au>Ushakov, S V</au><au>Zhang, P</au><au>Long, J R</au><au>Navrotsky, A</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>3</volume><issue>8</issue><spage>4248</spage><epage>4254</epage><pages>4248-4254</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>For coordinatively unsaturated metal-organic frameworks (MOFs), the metal centers can be functionalized as CO sub(2) capture/storage adsorbents by grafting species having specific active groups. We report direct measurement of enthalpy of adsorption of CO sub(2) on an alkylamine-appended MOF, mmen-Mg sub(2)(dobpdc) employing gas adsorption calorimetry at 298, 323 and 348 K. This methodology provides, for the first time, the detailed dependence of energy and entropy of sorption as a function of coverage and temperature. The enthalpy data suggest three types of adsorption events: strongest exothermic initial chemisorption at low coverage, majority moderate chemisorption at intermediate loading and weakest physisorption at highest coverage. The partial molar properties and isotherms are consistent with the presence of two different potential chemisorption mechanisms: 2 : 1 (amine-CO sub(2)) stoichiometry near zero coverage and 1 : 1 afterwards. Both chemical potential and differential enthalpy of adsorption become less negative with increasing temperature, implying increasing adsorbent entropy at elevated temperature. These observations are consistent with weaker CO sub(2) binding at higher temperature.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c4ta06496h</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2015-01, Vol.3 (8), p.4248-4254 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_osti_scitechconnect_1384824 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorbents Adsorption Calorimetry Carbon capture and storage Carbon dioxide Chemisorption Enthalpy Entropy membrane, carbon capture, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Metal-organic frameworks Sustainability |
title | Thermodynamic complexity of carbon capture in alkylamine-functionalized metal–organic frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20complexity%20of%20carbon%20capture%20in%20alkylamine-functionalized%20metal%E2%80%93organic%20frameworks&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wu,%20D&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Gas%20Separations%20Relevant%20to%20Clean%20Energy%20Technologies%20(CGS)&rft.date=2015-01-01&rft.volume=3&rft.issue=8&rft.spage=4248&rft.epage=4254&rft.pages=4248-4254&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c4ta06496h&rft_dat=%3Cproquest_osti_%3E1669872709%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669872709&rft_id=info:pmid/&rfr_iscdi=true |