Electrostatic carrier doping of GdTiO 3 /SrTiO 3 interfaces

Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO 3 , and the band insulator SrTiO 3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately ½ electron per surface unit cell at each GdTiO 3 /SrTiO 3 interface. The sheet carrier...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-12, Vol.99 (23), p.232116-232116-4
Hauptverfasser: Moetakef, Pouya, Cain, Tyler A., Ouellette, Daniel G., Zhang, Jack Y., Klenov, Dmitri O., Janotti, Anderson, Van de Walle, Chris G., Rajan, Siddharth, Allen, S. James, Stemmer, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232116-4
container_issue 23
container_start_page 232116
container_title Applied physics letters
container_volume 99
creator Moetakef, Pouya
Cain, Tyler A.
Ouellette, Daniel G.
Zhang, Jack Y.
Klenov, Dmitri O.
Janotti, Anderson
Van de Walle, Chris G.
Rajan, Siddharth
Allen, S. James
Stemmer, Susanne
description Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO 3 , and the band insulator SrTiO 3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately ½ electron per surface unit cell at each GdTiO 3 /SrTiO 3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO 3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution, and the influence of different electrostatic boundary conditions are obtained.
doi_str_mv 10.1063/1.3669402
format Article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1380882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>apl</sourcerecordid><originalsourceid>FETCH-LOGICAL-o152t-427c14c350df40eb93dc871f1e332519a6ce96d7e692d40e9ff18b66281785c3</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKsH_4PF-7aZzOYLQZBSq1Dowb2HNB8aqbslm4v_vVu2l55mhvcY3u8R8gh0AVTgEhYohG4ouyIzoFLWCKCuyYxSirXQHG7J3TD8jCdniDPyvD4EV3I_FFuSq5zNOYVc-f6Yuq-qj9XGt2lXYbX8zNOSuhJytC4M9-Qm2sMQHs5zTtq3dbt6r7e7zcfqdVv3wFmpGyYdNA459bGhYa_ROyUhQkBkHLQVLmjhZRCa-dGgYwS1F4IpkIo7nJOn6e0YMpnBpRLct-u7bgxuABVVio2ml8l00keUvjPHnH5t_jNAzakaA-ZczQWymZDxH2ucW1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrostatic carrier doping of GdTiO 3 /SrTiO 3 interfaces</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Moetakef, Pouya ; Cain, Tyler A. ; Ouellette, Daniel G. ; Zhang, Jack Y. ; Klenov, Dmitri O. ; Janotti, Anderson ; Van de Walle, Chris G. ; Rajan, Siddharth ; Allen, S. James ; Stemmer, Susanne</creator><creatorcontrib>Moetakef, Pouya ; Cain, Tyler A. ; Ouellette, Daniel G. ; Zhang, Jack Y. ; Klenov, Dmitri O. ; Janotti, Anderson ; Van de Walle, Chris G. ; Rajan, Siddharth ; Allen, S. James ; Stemmer, Susanne ; Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM)</creatorcontrib><description>Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO 3 , and the band insulator SrTiO 3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately ½ electron per surface unit cell at each GdTiO 3 /SrTiO 3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO 3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution, and the influence of different electrostatic boundary conditions are obtained.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3669402</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>Applied physics letters, 2011-12, Vol.99 (23), p.232116-232116-4</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-o152t-427c14c350df40eb93dc871f1e332519a6ce96d7e692d40e9ff18b66281785c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.3669402$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4497,27903,27904,76130,76136</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1380882$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moetakef, Pouya</creatorcontrib><creatorcontrib>Cain, Tyler A.</creatorcontrib><creatorcontrib>Ouellette, Daniel G.</creatorcontrib><creatorcontrib>Zhang, Jack Y.</creatorcontrib><creatorcontrib>Klenov, Dmitri O.</creatorcontrib><creatorcontrib>Janotti, Anderson</creatorcontrib><creatorcontrib>Van de Walle, Chris G.</creatorcontrib><creatorcontrib>Rajan, Siddharth</creatorcontrib><creatorcontrib>Allen, S. James</creatorcontrib><creatorcontrib>Stemmer, Susanne</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM)</creatorcontrib><title>Electrostatic carrier doping of GdTiO 3 /SrTiO 3 interfaces</title><title>Applied physics letters</title><description>Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO 3 , and the band insulator SrTiO 3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately ½ electron per surface unit cell at each GdTiO 3 /SrTiO 3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO 3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution, and the influence of different electrostatic boundary conditions are obtained.</description><subject>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEQxYMoWKsH_4PF-7aZzOYLQZBSq1Dowb2HNB8aqbslm4v_vVu2l55mhvcY3u8R8gh0AVTgEhYohG4ouyIzoFLWCKCuyYxSirXQHG7J3TD8jCdniDPyvD4EV3I_FFuSq5zNOYVc-f6Yuq-qj9XGt2lXYbX8zNOSuhJytC4M9-Qm2sMQHs5zTtq3dbt6r7e7zcfqdVv3wFmpGyYdNA459bGhYa_ROyUhQkBkHLQVLmjhZRCa-dGgYwS1F4IpkIo7nJOn6e0YMpnBpRLct-u7bgxuABVVio2ml8l00keUvjPHnH5t_jNAzakaA-ZczQWymZDxH2ucW1A</recordid><startdate>20111205</startdate><enddate>20111205</enddate><creator>Moetakef, Pouya</creator><creator>Cain, Tyler A.</creator><creator>Ouellette, Daniel G.</creator><creator>Zhang, Jack Y.</creator><creator>Klenov, Dmitri O.</creator><creator>Janotti, Anderson</creator><creator>Van de Walle, Chris G.</creator><creator>Rajan, Siddharth</creator><creator>Allen, S. James</creator><creator>Stemmer, Susanne</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>OTOTI</scope></search><sort><creationdate>20111205</creationdate><title>Electrostatic carrier doping of GdTiO 3 /SrTiO 3 interfaces</title><author>Moetakef, Pouya ; Cain, Tyler A. ; Ouellette, Daniel G. ; Zhang, Jack Y. ; Klenov, Dmitri O. ; Janotti, Anderson ; Van de Walle, Chris G. ; Rajan, Siddharth ; Allen, S. James ; Stemmer, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o152t-427c14c350df40eb93dc871f1e332519a6ce96d7e692d40e9ff18b66281785c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moetakef, Pouya</creatorcontrib><creatorcontrib>Cain, Tyler A.</creatorcontrib><creatorcontrib>Ouellette, Daniel G.</creatorcontrib><creatorcontrib>Zhang, Jack Y.</creatorcontrib><creatorcontrib>Klenov, Dmitri O.</creatorcontrib><creatorcontrib>Janotti, Anderson</creatorcontrib><creatorcontrib>Van de Walle, Chris G.</creatorcontrib><creatorcontrib>Rajan, Siddharth</creatorcontrib><creatorcontrib>Allen, S. James</creatorcontrib><creatorcontrib>Stemmer, Susanne</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moetakef, Pouya</au><au>Cain, Tyler A.</au><au>Ouellette, Daniel G.</au><au>Zhang, Jack Y.</au><au>Klenov, Dmitri O.</au><au>Janotti, Anderson</au><au>Van de Walle, Chris G.</au><au>Rajan, Siddharth</au><au>Allen, S. James</au><au>Stemmer, Susanne</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Energy Efficient Materials (CEEM)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic carrier doping of GdTiO 3 /SrTiO 3 interfaces</atitle><jtitle>Applied physics letters</jtitle><date>2011-12-05</date><risdate>2011</risdate><volume>99</volume><issue>23</issue><spage>232116</spage><epage>232116-4</epage><pages>232116-232116-4</pages><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO 3 , and the band insulator SrTiO 3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately ½ electron per surface unit cell at each GdTiO 3 /SrTiO 3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO 3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution, and the influence of different electrostatic boundary conditions are obtained.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3669402</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2011-12, Vol.99 (23), p.232116-232116-4
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_1380882
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects solar (photovoltaic), solid state lighting, phonons, thermoelectric, bio-inspired, energy storage (including batteries and capacitors), electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
title Electrostatic carrier doping of GdTiO 3 /SrTiO 3 interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic%20carrier%20doping%20of%20GdTiO%203%20/SrTiO%203%20interfaces&rft.jtitle=Applied%20physics%20letters&rft.au=Moetakef,%20Pouya&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Energy%20Efficient%20Materials%20(CEEM)&rft.date=2011-12-05&rft.volume=99&rft.issue=23&rft.spage=232116&rft.epage=232116-4&rft.pages=232116-232116-4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.3669402&rft_dat=%3Cscitation_osti_%3Eapl%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true