Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping

Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2017-05, Vol.176 (C), p.170-176
Hauptverfasser: Pekin, Thomas C., Gammer, Christoph, Ciston, Jim, Minor, Andrew M., Ophus, Colin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue C
container_start_page 170
container_title Ultramicroscopy
container_volume 176
creator Pekin, Thomas C.
Gammer, Christoph
Ciston, Jim
Minor, Andrew M.
Ophus, Colin
description Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. In this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with a Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. We have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.
doi_str_mv 10.1016/j.ultramic.2016.12.021
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1379825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399116304065</els_id><sourcerecordid>1865536094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-97b99acd449246c57143d6e5f9806acea88e2e6a83de250428cddf565a2ccfe73</originalsourceid><addsrcrecordid>eNqFkM1q3DAYRUVpaSY_rxBMVt3Y1Y8lS7uUkDaFQDYtdCc00ueJprbkSppA-vSVO0m3XQnBufe7HIQuCe4IJuLjvjtMJZnZ247Wf0dohyl5gzZEDqqlA2Vv0QYz3LdMKXKCTnPeY4wJ7uV7dEIlEVQytkE_HpbiZ__bh13jfP7ZJNj5XJuLj6Ex0y4mXx7n3IwxNcGEuAUzNzCBLakCzo9jMvYvvKZ8aGazLLXtHL0bzZTh4uU9Q98_3367uWvvH758vfl031qOVWnVsFXKWNf3ivbC8oH0zAngo5JYGAtGSqAgjGQOKMc9lda5kQtuqLUjDOwMXR17Yy5eZ-sL2EcbQ6gLNWGDkpRX6MMRWlL8dYBc9OyzhWkyAeIhayIF50xg1VdUHFGbYs4JRr0kP5v0rAnWq3q916_q9apeE6qr-hq8fLlx2M7g_sVeXVfg-ghA1fHkIa1rIVhwPq1jXfT_u_EHpi-aSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865536094</pqid></control><display><type>article</type><title>Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping</title><source>Access via ScienceDirect (Elsevier)</source><creator>Pekin, Thomas C. ; Gammer, Christoph ; Ciston, Jim ; Minor, Andrew M. ; Ophus, Colin</creator><creatorcontrib>Pekin, Thomas C. ; Gammer, Christoph ; Ciston, Jim ; Minor, Andrew M. ; Ophus, Colin ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. In this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with a Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. We have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2016.12.021</identifier><identifier>PMID: 28162833</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>MATERIALS SCIENCE ; Nanobeam electron diffraction ; Strain measurement</subject><ispartof>Ultramicroscopy, 2017-05, Vol.176 (C), p.170-176</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-97b99acd449246c57143d6e5f9806acea88e2e6a83de250428cddf565a2ccfe73</citedby><cites>FETCH-LOGICAL-c509t-97b99acd449246c57143d6e5f9806acea88e2e6a83de250428cddf565a2ccfe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultramic.2016.12.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28162833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1379825$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pekin, Thomas C.</creatorcontrib><creatorcontrib>Gammer, Christoph</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Minor, Andrew M.</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. In this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with a Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. We have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.</description><subject>MATERIALS SCIENCE</subject><subject>Nanobeam electron diffraction</subject><subject>Strain measurement</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1q3DAYRUVpaSY_rxBMVt3Y1Y8lS7uUkDaFQDYtdCc00ueJprbkSppA-vSVO0m3XQnBufe7HIQuCe4IJuLjvjtMJZnZ247Wf0dohyl5gzZEDqqlA2Vv0QYz3LdMKXKCTnPeY4wJ7uV7dEIlEVQytkE_HpbiZ__bh13jfP7ZJNj5XJuLj6Ex0y4mXx7n3IwxNcGEuAUzNzCBLakCzo9jMvYvvKZ8aGazLLXtHL0bzZTh4uU9Q98_3367uWvvH758vfl031qOVWnVsFXKWNf3ivbC8oH0zAngo5JYGAtGSqAgjGQOKMc9lda5kQtuqLUjDOwMXR17Yy5eZ-sL2EcbQ6gLNWGDkpRX6MMRWlL8dYBc9OyzhWkyAeIhayIF50xg1VdUHFGbYs4JRr0kP5v0rAnWq3q916_q9apeE6qr-hq8fLlx2M7g_sVeXVfg-ghA1fHkIa1rIVhwPq1jXfT_u_EHpi-aSQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Pekin, Thomas C.</creator><creator>Gammer, Christoph</creator><creator>Ciston, Jim</creator><creator>Minor, Andrew M.</creator><creator>Ophus, Colin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170501</creationdate><title>Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping</title><author>Pekin, Thomas C. ; Gammer, Christoph ; Ciston, Jim ; Minor, Andrew M. ; Ophus, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-97b99acd449246c57143d6e5f9806acea88e2e6a83de250428cddf565a2ccfe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>MATERIALS SCIENCE</topic><topic>Nanobeam electron diffraction</topic><topic>Strain measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pekin, Thomas C.</creatorcontrib><creatorcontrib>Gammer, Christoph</creatorcontrib><creatorcontrib>Ciston, Jim</creatorcontrib><creatorcontrib>Minor, Andrew M.</creatorcontrib><creatorcontrib>Ophus, Colin</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pekin, Thomas C.</au><au>Gammer, Christoph</au><au>Ciston, Jim</au><au>Minor, Andrew M.</au><au>Ophus, Colin</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>176</volume><issue>C</issue><spage>170</spage><epage>176</epage><pages>170-176</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. In this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with a Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. We have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28162833</pmid><doi>10.1016/j.ultramic.2016.12.021</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2017-05, Vol.176 (C), p.170-176
issn 0304-3991
1879-2723
language eng
recordid cdi_osti_scitechconnect_1379825
source Access via ScienceDirect (Elsevier)
subjects MATERIALS SCIENCE
Nanobeam electron diffraction
Strain measurement
title Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20disk%20registration%20algorithms%20for%20nanobeam%20electron%20diffraction%20strain%20mapping&rft.jtitle=Ultramicroscopy&rft.au=Pekin,%20Thomas%20C.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2017-05-01&rft.volume=176&rft.issue=C&rft.spage=170&rft.epage=176&rft.pages=170-176&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2016.12.021&rft_dat=%3Cproquest_osti_%3E1865536094%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865536094&rft_id=info:pmid/28162833&rft_els_id=S0304399116304065&rfr_iscdi=true