The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies

We present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redsh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-08, Vol.460 (4), p.4210-4219
Hauptverfasser: Gil-Marín, Héctor, Percival, Will J., Cuesta, Antonio J., Brownstein, Joel R., Chuang, Chia-Hsun, Ho, Shirley, Kitaura, Francisco-Shu, Maraston, Claudia, Prada, Francisco, Rodríguez-Torres, Sergio, Ross, Ashley J., Schlegel, David J., Schneider, Donald P., Thomas, Daniel, Tinker, Jeremy L., Tojeiro, Rita, Vargas Magaña, Mariana, Zhao, Gong-Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an anisotropic analysis of the baryon acoustic oscillation (BAO) scale in the twelfth and final data release of the Baryon Oscillation Spectroscopic Survey (BOSS). We independently analyse the LOWZ and CMASS galaxy samples: the LOWZ sample contains 361 762 galaxies with an effective redshift of z LOWZ = 0.32; the CMASS sample consists of 777 202 galaxies with an effective redshift of z CMASS = 0.57. We extract the BAO peak position from the monopole power-spectrum moment, α0, and from the μ2 moment, α2, where μ is the cosine of the angle to the line of sight. The μ2-moment provides equivalent information to that available in the quadrupole but is simpler to analyse. After applying a reconstruction algorithm to reduce the BAO suppression by bulk motions, we measure the BAO peak position in the monopole and μ2-moment, which are related to radial and angular shifts in scale. We report H(z LOWZ)r s(z d) = (11.60 ± 0.60) × 103 km s−1 and D A(z LOWZ)/r s(z d) = 6.66 ± 0.16 with a cross-correlation coefficient of $r_{HD_{\rm A}}=0.41$ , for the LOWZ sample; and H(z CMASS)r s(z d) = (14.56 ± 0.37) × 103 km s−1 and D A(z CMASS)/r s(z d) = 9.42 ± 0.13 with a cross-correlation coefficient of $r_{HD_{\rm A}}=0.47$ , for the CMASS sample. We demonstrate that our results are not affected by the fiducial cosmology assumed for the analysis. We combine these results with the measurements of the BAO peak position in the monopole and quadrupole correlation function of the same data set (Cuesta et al. 2016, companion paper) and report the consensus values: H(z LOWZ)r s(z d) = (11.63 ± 0.69) × 103 km s−1 and D A(z LOWZ)/r s(z d) = 6.67 ± 0.15 with $r_{HD_{\rm A}}=0.35$ for the LOWZ sample; H(z CMASS)r s(z d) = (14.67 ± 0.42) × 103 km s−1 and D A(z CMASS)/r s(z d) = 9.47 ± 0.12 with $r_{HD_{\rm A}}=0.52$ for the CMASS sample.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stw1264