Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers

The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-05, Vol.139 (20), p.7020-7029
Hauptverfasser: Cao, Lingyun, Lin, Zekai, Shi, Wenjie, Wang, Zi, Zhang, Cankun, Hu, Xuefu, Wang, Cheng, Lin, Wenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7029
container_issue 20
container_start_page 7020
container_title Journal of the American Chemical Society
container_volume 139
creator Cao, Lingyun
Lin, Zekai
Shi, Wenjie
Wang, Zi
Zhang, Cankun
Hu, Xuefu
Wang, Cheng
Lin, Wenbin
description The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.
doi_str_mv 10.1021/jacs.7b02470
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1379432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i03782202</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</originalsourceid><addsrcrecordid>eNptkE1PwkAQhjdGI4jePJvGkweL-73lSBA_Eggx4rnZbqewpGxJt0S5-R_8h_4SlxQ9eXpnMs9MMg9ClwT3CabkbqWN76sMU67wEeoSQXEsCJXHqIsxprFKJOugM-9XoeU0IaeoQxMuVSJoF72OP4xtKhdN7aLWjQ2Vdnk0XG9KW1jIo5ctOLO0bhGF0fy9iu_tGpwPoC6jKTS6_P78mtUL7ayJJnoHtT9HJ4UuPVwcsofeHsbz0VM8mT0-j4aTWHOimjgZgDKUSWBASC4EYcByzIHKjDEsDSUqzzinAEZLwYUADgXLEyaJEjhkD123dyvf2NSHP8AsTeUcmCYlTA04owG6bSFTV97XUKSb2q51vUsJTvcC073A9CAw4Fctvtlma8j_4F9jAbhpgf3WqtrWwYP__9YPF-d5SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</title><source>American Chemical Society Journals</source><creator>Cao, Lingyun ; Lin, Zekai ; Shi, Wenjie ; Wang, Zi ; Zhang, Cankun ; Hu, Xuefu ; Wang, Cheng ; Lin, Wenbin</creator><creatorcontrib>Cao, Lingyun ; Lin, Zekai ; Shi, Wenjie ; Wang, Zi ; Zhang, Cankun ; Hu, Xuefu ; Wang, Cheng ; Lin, Wenbin ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b02470</identifier><identifier>PMID: 28467852</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>Journal of the American Chemical Society, 2017-05, Vol.139 (20), p.7020-7029</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</citedby><cites>FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</cites><orcidid>0000-0001-7035-7759 ; 0000-0002-7906-8061 ; 0000000279068061 ; 0000000170357759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b02470$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b02470$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28467852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1379432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Lingyun</creatorcontrib><creatorcontrib>Lin, Zekai</creatorcontrib><creatorcontrib>Shi, Wenjie</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Zhang, Cankun</creatorcontrib><creatorcontrib>Hu, Xuefu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwkAQhjdGI4jePJvGkweL-73lSBA_Eggx4rnZbqewpGxJt0S5-R_8h_4SlxQ9eXpnMs9MMg9ClwT3CabkbqWN76sMU67wEeoSQXEsCJXHqIsxprFKJOugM-9XoeU0IaeoQxMuVSJoF72OP4xtKhdN7aLWjQ2Vdnk0XG9KW1jIo5ctOLO0bhGF0fy9iu_tGpwPoC6jKTS6_P78mtUL7ayJJnoHtT9HJ4UuPVwcsofeHsbz0VM8mT0-j4aTWHOimjgZgDKUSWBASC4EYcByzIHKjDEsDSUqzzinAEZLwYUADgXLEyaJEjhkD123dyvf2NSHP8AsTeUcmCYlTA04owG6bSFTV97XUKSb2q51vUsJTvcC073A9CAw4Fctvtlma8j_4F9jAbhpgf3WqtrWwYP__9YPF-d5SQ</recordid><startdate>20170524</startdate><enddate>20170524</enddate><creator>Cao, Lingyun</creator><creator>Lin, Zekai</creator><creator>Shi, Wenjie</creator><creator>Wang, Zi</creator><creator>Zhang, Cankun</creator><creator>Hu, Xuefu</creator><creator>Wang, Cheng</creator><creator>Lin, Wenbin</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7035-7759</orcidid><orcidid>https://orcid.org/0000-0002-7906-8061</orcidid><orcidid>https://orcid.org/0000000279068061</orcidid><orcidid>https://orcid.org/0000000170357759</orcidid></search><sort><creationdate>20170524</creationdate><title>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</title><author>Cao, Lingyun ; Lin, Zekai ; Shi, Wenjie ; Wang, Zi ; Zhang, Cankun ; Hu, Xuefu ; Wang, Cheng ; Lin, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Lingyun</creatorcontrib><creatorcontrib>Lin, Zekai</creatorcontrib><creatorcontrib>Shi, Wenjie</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Zhang, Cankun</creatorcontrib><creatorcontrib>Hu, Xuefu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Lingyun</au><au>Lin, Zekai</au><au>Shi, Wenjie</au><au>Wang, Zi</au><au>Zhang, Cankun</au><au>Hu, Xuefu</au><au>Wang, Cheng</au><au>Lin, Wenbin</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-05-24</date><risdate>2017</risdate><volume>139</volume><issue>20</issue><spage>7020</spage><epage>7029</epage><pages>7020-7029</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris­(ethyne-2,1-diyl))­tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28467852</pmid><doi>10.1021/jacs.7b02470</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7035-7759</orcidid><orcidid>https://orcid.org/0000-0002-7906-8061</orcidid><orcidid>https://orcid.org/0000000279068061</orcidid><orcidid>https://orcid.org/0000000170357759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-05, Vol.139 (20), p.7020-7029
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1379432
source American Chemical Society Journals
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
title Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exciton%20Migration%20and%20Amplified%20Quenching%20on%20Two-Dimensional%20Metal%E2%80%93Organic%20Layers&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Cao,%20Lingyun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-05-24&rft.volume=139&rft.issue=20&rft.spage=7020&rft.epage=7029&rft.pages=7020-7029&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b02470&rft_dat=%3Cacs_osti_%3Ei03782202%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28467852&rfr_iscdi=true