Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers
The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-05, Vol.139 (20), p.7020-7029 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7029 |
---|---|
container_issue | 20 |
container_start_page | 7020 |
container_title | Journal of the American Chemical Society |
container_volume | 139 |
creator | Cao, Lingyun Lin, Zekai Shi, Wenjie Wang, Zi Zhang, Cankun Hu, Xuefu Wang, Cheng Lin, Wenbin |
description | The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing. |
doi_str_mv | 10.1021/jacs.7b02470 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1379432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>i03782202</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</originalsourceid><addsrcrecordid>eNptkE1PwkAQhjdGI4jePJvGkweL-73lSBA_Eggx4rnZbqewpGxJt0S5-R_8h_4SlxQ9eXpnMs9MMg9ClwT3CabkbqWN76sMU67wEeoSQXEsCJXHqIsxprFKJOugM-9XoeU0IaeoQxMuVSJoF72OP4xtKhdN7aLWjQ2Vdnk0XG9KW1jIo5ctOLO0bhGF0fy9iu_tGpwPoC6jKTS6_P78mtUL7ayJJnoHtT9HJ4UuPVwcsofeHsbz0VM8mT0-j4aTWHOimjgZgDKUSWBASC4EYcByzIHKjDEsDSUqzzinAEZLwYUADgXLEyaJEjhkD123dyvf2NSHP8AsTeUcmCYlTA04owG6bSFTV97XUKSb2q51vUsJTvcC073A9CAw4Fctvtlma8j_4F9jAbhpgf3WqtrWwYP__9YPF-d5SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</title><source>American Chemical Society Journals</source><creator>Cao, Lingyun ; Lin, Zekai ; Shi, Wenjie ; Wang, Zi ; Zhang, Cankun ; Hu, Xuefu ; Wang, Cheng ; Lin, Wenbin</creator><creatorcontrib>Cao, Lingyun ; Lin, Zekai ; Shi, Wenjie ; Wang, Zi ; Zhang, Cankun ; Hu, Xuefu ; Wang, Cheng ; Lin, Wenbin ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b02470</identifier><identifier>PMID: 28467852</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE</subject><ispartof>Journal of the American Chemical Society, 2017-05, Vol.139 (20), p.7020-7029</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</citedby><cites>FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</cites><orcidid>0000-0001-7035-7759 ; 0000-0002-7906-8061 ; 0000000279068061 ; 0000000170357759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.7b02470$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.7b02470$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28467852$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1379432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Lingyun</creatorcontrib><creatorcontrib>Lin, Zekai</creatorcontrib><creatorcontrib>Shi, Wenjie</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Zhang, Cankun</creatorcontrib><creatorcontrib>Hu, Xuefu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkE1PwkAQhjdGI4jePJvGkweL-73lSBA_Eggx4rnZbqewpGxJt0S5-R_8h_4SlxQ9eXpnMs9MMg9ClwT3CabkbqWN76sMU67wEeoSQXEsCJXHqIsxprFKJOugM-9XoeU0IaeoQxMuVSJoF72OP4xtKhdN7aLWjQ2Vdnk0XG9KW1jIo5ctOLO0bhGF0fy9iu_tGpwPoC6jKTS6_P78mtUL7ayJJnoHtT9HJ4UuPVwcsofeHsbz0VM8mT0-j4aTWHOimjgZgDKUSWBASC4EYcByzIHKjDEsDSUqzzinAEZLwYUADgXLEyaJEjhkD123dyvf2NSHP8AsTeUcmCYlTA04owG6bSFTV97XUKSb2q51vUsJTvcC073A9CAw4Fctvtlma8j_4F9jAbhpgf3WqtrWwYP__9YPF-d5SQ</recordid><startdate>20170524</startdate><enddate>20170524</enddate><creator>Cao, Lingyun</creator><creator>Lin, Zekai</creator><creator>Shi, Wenjie</creator><creator>Wang, Zi</creator><creator>Zhang, Cankun</creator><creator>Hu, Xuefu</creator><creator>Wang, Cheng</creator><creator>Lin, Wenbin</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7035-7759</orcidid><orcidid>https://orcid.org/0000-0002-7906-8061</orcidid><orcidid>https://orcid.org/0000000279068061</orcidid><orcidid>https://orcid.org/0000000170357759</orcidid></search><sort><creationdate>20170524</creationdate><title>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</title><author>Cao, Lingyun ; Lin, Zekai ; Shi, Wenjie ; Wang, Zi ; Zhang, Cankun ; Hu, Xuefu ; Wang, Cheng ; Lin, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-89e7c236e3e11d5513e3d04e26b3306c217db442eeca65455e4ef3d8361750d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Lingyun</creatorcontrib><creatorcontrib>Lin, Zekai</creatorcontrib><creatorcontrib>Shi, Wenjie</creatorcontrib><creatorcontrib>Wang, Zi</creatorcontrib><creatorcontrib>Zhang, Cankun</creatorcontrib><creatorcontrib>Hu, Xuefu</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Lin, Wenbin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Lingyun</au><au>Lin, Zekai</au><au>Shi, Wenjie</au><au>Wang, Zi</au><au>Zhang, Cankun</au><au>Hu, Xuefu</au><au>Wang, Cheng</au><au>Lin, Wenbin</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-05-24</date><risdate>2017</risdate><volume>139</volume><issue>20</issue><spage>7020</spage><epage>7029</epage><pages>7020-7029</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3′,3″-nitro-4,4′,4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28467852</pmid><doi>10.1021/jacs.7b02470</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7035-7759</orcidid><orcidid>https://orcid.org/0000-0002-7906-8061</orcidid><orcidid>https://orcid.org/0000000279068061</orcidid><orcidid>https://orcid.org/0000000170357759</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2017-05, Vol.139 (20), p.7020-7029 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1379432 |
source | American Chemical Society Journals |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE |
title | Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A29%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exciton%20Migration%20and%20Amplified%20Quenching%20on%20Two-Dimensional%20Metal%E2%80%93Organic%20Layers&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Cao,%20Lingyun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-05-24&rft.volume=139&rft.issue=20&rft.spage=7020&rft.epage=7029&rft.pages=7020-7029&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b02470&rft_dat=%3Cacs_osti_%3Ei03782202%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28467852&rfr_iscdi=true |