Hotspots of soil N2O emission enhanced through water absorption by plant residue

N 2 O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N 2 O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N 2 O production, most of which occurs within very s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature geoscience 2017-07, Vol.10 (7), p.496-500
Hauptverfasser: Kravchenko, A. N., Toosi, E. R., Guber, A. K., Ostrom, N. E., Yu, J., Azeem, K., Rivers, M. L., Robertson, G. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 7
container_start_page 496
container_title Nature geoscience
container_volume 10
creator Kravchenko, A. N.
Toosi, E. R.
Guber, A. K.
Ostrom, N. E.
Yu, J.
Azeem, K.
Rivers, M. L.
Robertson, G. P.
description N 2 O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N 2 O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N 2 O production, most of which occurs within very small discrete soil volumes. Such hotspots of N 2 O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N 2 O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N 2 O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N 2 O production via microbial denitrification. The presence of large (Ø >35 μm) pores was a prerequisite for maximized hotspot N 2 O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N 2 O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment. Production of the greenhouse gas nitrous oxide occurs episodically in small soil volumes. Soil microcosm experiments reveal that water absorption by plant residue raises moisture levels and accelerates nitrous oxide production by microbial denitrification.
doi_str_mv 10.1038/ngeo2963
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1375352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1915544465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-82d58e18464f514711be4ef9943ddf2231f98d44c9a3e84e52669cf26004b3b73</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AiCs4p-CcEfdGHaX62yaOIOmE4H_Q5tOll7diSmqTI_ns76kB8OO44PhzHN8suCb4jmMl7twJPVc6OsgkpBJ1hheXxYZaKn2ZnMa4xzjEvxCR7n_sUu6GQtyj6doPe6BLBto2x9Q6Ba0pnoEapCb5fNei7TBBQWUUfurQX1Q51m9IlFCC2dQ_n2YktNxEufvs0-3x--niczxbLl9fHh8XMMELTTNJaSCCS59wKwgtCKuBgleKsri2ljFgla86NKhlIDoLmuTKW5hjzilUFm2ZX410fU6ujaROYxnjnwCRNWCGYoAO6HlEX_FcPMem174Mb_tJEESE457kY1M2oTPAxBrC6C-22DDtNsN6Hqg-hDvR2pHEgwzb8Ofjf_gCrVXbl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1915544465</pqid></control><display><type>article</type><title>Hotspots of soil N2O emission enhanced through water absorption by plant residue</title><source>SpringerLink Journals</source><creator>Kravchenko, A. N. ; Toosi, E. R. ; Guber, A. K. ; Ostrom, N. E. ; Yu, J. ; Azeem, K. ; Rivers, M. L. ; Robertson, G. P.</creator><creatorcontrib>Kravchenko, A. N. ; Toosi, E. R. ; Guber, A. K. ; Ostrom, N. E. ; Yu, J. ; Azeem, K. ; Rivers, M. L. ; Robertson, G. P. ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>N 2 O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N 2 O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N 2 O production, most of which occurs within very small discrete soil volumes. Such hotspots of N 2 O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N 2 O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N 2 O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N 2 O production via microbial denitrification. The presence of large (Ø &gt;35 μm) pores was a prerequisite for maximized hotspot N 2 O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N 2 O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment. Production of the greenhouse gas nitrous oxide occurs episodically in small soil volumes. Soil microcosm experiments reveal that water absorption by plant residue raises moisture levels and accelerates nitrous oxide production by microbial denitrification.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/ngeo2963</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106/694/682 ; 704/172/4081 ; 704/47/4112 ; Absorption ; Air pollution ; Anthropogenic factors ; Arable land ; Atmosphere ; Atmospheric models ; Decomposition ; Denitrification ; Diffusion ; Dye dispersion ; Earth Sciences ; Earth System Sciences ; Emission analysis ; Emissions ; Environmental changes ; Environmental conditions ; Fluxes ; Geochemistry ; Geology ; Geophysics/Geodesy ; GEOSCIENCES ; Greenhouse gases ; Hot spots ; Hydrology ; Microorganisms ; Mitigation ; Modelling ; Moisture ; Nitrous oxide ; Nitrous oxide emissions ; Pores ; Porosity ; Residues ; Soil ; Soil characteristics ; Soil moisture ; Soils ; Tillage ; Water absorption</subject><ispartof>Nature geoscience, 2017-07, Vol.10 (7), p.496-500</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-82d58e18464f514711be4ef9943ddf2231f98d44c9a3e84e52669cf26004b3b73</citedby><cites>FETCH-LOGICAL-c312t-82d58e18464f514711be4ef9943ddf2231f98d44c9a3e84e52669cf26004b3b73</cites><orcidid>0000-0001-9771-9895 ; 0000000197719895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ngeo2963$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ngeo2963$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1375352$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kravchenko, A. N.</creatorcontrib><creatorcontrib>Toosi, E. R.</creatorcontrib><creatorcontrib>Guber, A. K.</creatorcontrib><creatorcontrib>Ostrom, N. E.</creatorcontrib><creatorcontrib>Yu, J.</creatorcontrib><creatorcontrib>Azeem, K.</creatorcontrib><creatorcontrib>Rivers, M. L.</creatorcontrib><creatorcontrib>Robertson, G. P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Hotspots of soil N2O emission enhanced through water absorption by plant residue</title><title>Nature geoscience</title><addtitle>Nature Geosci</addtitle><description>N 2 O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N 2 O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N 2 O production, most of which occurs within very small discrete soil volumes. Such hotspots of N 2 O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N 2 O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N 2 O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N 2 O production via microbial denitrification. The presence of large (Ø &gt;35 μm) pores was a prerequisite for maximized hotspot N 2 O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N 2 O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment. Production of the greenhouse gas nitrous oxide occurs episodically in small soil volumes. Soil microcosm experiments reveal that water absorption by plant residue raises moisture levels and accelerates nitrous oxide production by microbial denitrification.</description><subject>704/106/694/682</subject><subject>704/172/4081</subject><subject>704/47/4112</subject><subject>Absorption</subject><subject>Air pollution</subject><subject>Anthropogenic factors</subject><subject>Arable land</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Decomposition</subject><subject>Denitrification</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Fluxes</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>GEOSCIENCES</subject><subject>Greenhouse gases</subject><subject>Hot spots</subject><subject>Hydrology</subject><subject>Microorganisms</subject><subject>Mitigation</subject><subject>Modelling</subject><subject>Moisture</subject><subject>Nitrous oxide</subject><subject>Nitrous oxide emissions</subject><subject>Pores</subject><subject>Porosity</subject><subject>Residues</subject><subject>Soil</subject><subject>Soil characteristics</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Tillage</subject><subject>Water absorption</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0N9LwzAQB_AiCs4p-CcEfdGHaX62yaOIOmE4H_Q5tOll7diSmqTI_ns76kB8OO44PhzHN8suCb4jmMl7twJPVc6OsgkpBJ1hheXxYZaKn2ZnMa4xzjEvxCR7n_sUu6GQtyj6doPe6BLBto2x9Q6Ba0pnoEapCb5fNei7TBBQWUUfurQX1Q51m9IlFCC2dQ_n2YktNxEufvs0-3x--niczxbLl9fHh8XMMELTTNJaSCCS59wKwgtCKuBgleKsri2ljFgla86NKhlIDoLmuTKW5hjzilUFm2ZX410fU6ujaROYxnjnwCRNWCGYoAO6HlEX_FcPMem174Mb_tJEESE457kY1M2oTPAxBrC6C-22DDtNsN6Hqg-hDvR2pHEgwzb8Ofjf_gCrVXbl</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Kravchenko, A. N.</creator><creator>Toosi, E. R.</creator><creator>Guber, A. K.</creator><creator>Ostrom, N. E.</creator><creator>Yu, J.</creator><creator>Azeem, K.</creator><creator>Rivers, M. L.</creator><creator>Robertson, G. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9771-9895</orcidid><orcidid>https://orcid.org/0000000197719895</orcidid></search><sort><creationdate>20170701</creationdate><title>Hotspots of soil N2O emission enhanced through water absorption by plant residue</title><author>Kravchenko, A. N. ; Toosi, E. R. ; Guber, A. K. ; Ostrom, N. E. ; Yu, J. ; Azeem, K. ; Rivers, M. L. ; Robertson, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-82d58e18464f514711be4ef9943ddf2231f98d44c9a3e84e52669cf26004b3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>704/106/694/682</topic><topic>704/172/4081</topic><topic>704/47/4112</topic><topic>Absorption</topic><topic>Air pollution</topic><topic>Anthropogenic factors</topic><topic>Arable land</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Decomposition</topic><topic>Denitrification</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Fluxes</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>GEOSCIENCES</topic><topic>Greenhouse gases</topic><topic>Hot spots</topic><topic>Hydrology</topic><topic>Microorganisms</topic><topic>Mitigation</topic><topic>Modelling</topic><topic>Moisture</topic><topic>Nitrous oxide</topic><topic>Nitrous oxide emissions</topic><topic>Pores</topic><topic>Porosity</topic><topic>Residues</topic><topic>Soil</topic><topic>Soil characteristics</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Tillage</topic><topic>Water absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kravchenko, A. N.</creatorcontrib><creatorcontrib>Toosi, E. R.</creatorcontrib><creatorcontrib>Guber, A. K.</creatorcontrib><creatorcontrib>Ostrom, N. E.</creatorcontrib><creatorcontrib>Yu, J.</creatorcontrib><creatorcontrib>Azeem, K.</creatorcontrib><creatorcontrib>Rivers, M. L.</creatorcontrib><creatorcontrib>Robertson, G. P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kravchenko, A. N.</au><au>Toosi, E. R.</au><au>Guber, A. K.</au><au>Ostrom, N. E.</au><au>Yu, J.</au><au>Azeem, K.</au><au>Rivers, M. L.</au><au>Robertson, G. P.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hotspots of soil N2O emission enhanced through water absorption by plant residue</atitle><jtitle>Nature geoscience</jtitle><stitle>Nature Geosci</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>10</volume><issue>7</issue><spage>496</spage><epage>500</epage><pages>496-500</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>N 2 O is a highly potent greenhouse gas and arable soils represent its major anthropogenic source. Field-scale assessments and predictions of soil N 2 O emission remain uncertain and imprecise due to the episodic and microscale nature of microbial N 2 O production, most of which occurs within very small discrete soil volumes. Such hotspots of N 2 O production are often associated with decomposing plant residue. Here we quantify physical and hydrological soil characteristics that lead to strikingly accelerated N 2 O emissions in plant residue-induced hotspots. Results reveal a mechanism for microscale N 2 O emissions: water absorption by plant residue that creates unique micro-environmental conditions, markedly different from those of the bulk soil. Moisture levels within plant residue exceeded those of bulk soil by 4–10-fold and led to accelerated N 2 O production via microbial denitrification. The presence of large (Ø &gt;35 μm) pores was a prerequisite for maximized hotspot N 2 O production and for subsequent diffusion to the atmosphere. Understanding and modelling hotspot microscale physical and hydrologic characteristics is a promising route to predict N 2 O emissions and thus to develop effective mitigation strategies and estimate global fluxes in a changing environment. Production of the greenhouse gas nitrous oxide occurs episodically in small soil volumes. Soil microcosm experiments reveal that water absorption by plant residue raises moisture levels and accelerates nitrous oxide production by microbial denitrification.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/ngeo2963</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9771-9895</orcidid><orcidid>https://orcid.org/0000000197719895</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1752-0894
ispartof Nature geoscience, 2017-07, Vol.10 (7), p.496-500
issn 1752-0894
1752-0908
language eng
recordid cdi_osti_scitechconnect_1375352
source SpringerLink Journals
subjects 704/106/694/682
704/172/4081
704/47/4112
Absorption
Air pollution
Anthropogenic factors
Arable land
Atmosphere
Atmospheric models
Decomposition
Denitrification
Diffusion
Dye dispersion
Earth Sciences
Earth System Sciences
Emission analysis
Emissions
Environmental changes
Environmental conditions
Fluxes
Geochemistry
Geology
Geophysics/Geodesy
GEOSCIENCES
Greenhouse gases
Hot spots
Hydrology
Microorganisms
Mitigation
Modelling
Moisture
Nitrous oxide
Nitrous oxide emissions
Pores
Porosity
Residues
Soil
Soil characteristics
Soil moisture
Soils
Tillage
Water absorption
title Hotspots of soil N2O emission enhanced through water absorption by plant residue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A17%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hotspots%20of%20soil%20N2O%20emission%20enhanced%20through%20water%20absorption%20by%20plant%20residue&rft.jtitle=Nature%20geoscience&rft.au=Kravchenko,%20A.%20N.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-07-01&rft.volume=10&rft.issue=7&rft.spage=496&rft.epage=500&rft.pages=496-500&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/ngeo2963&rft_dat=%3Cproquest_osti_%3E1915544465%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1915544465&rft_id=info:pmid/&rfr_iscdi=true