Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia
We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximu...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2017-07, Vol.19 (7), p.1, Article 241 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 19 |
creator | Rodenbough, Philip P. Chan, Siu-Wai |
description | We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximum of 165 GPa at an intermediate crystallite size of 14 nm, and then decreased thereafter to 77 GPa at 9 nm. Thermal expansion, meanwhile, decreased continuously to 70% of bulk value at 9 nm. These results are consistent to nano-ceria and together provide important insights into the thermal-mechanical structural properties of oxide nanoparticles. |
doi_str_mv | 10.1007/s11051-017-3922-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1375341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917626924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-63b746f1dd4338de867e78ed8bf114e7b0530004e1190a68e7f538d7e2769b1c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhiMEEqXwA9gimA0-O7GTEVV8SZVYQGKzHOfSpmqd4HOH8utxFQYWpvvQ8766e7PsGvgdcK7vCYCXwDhoJmshmD7JZlBqwapafZ6mXlYV41oV59kF0YZzUKIWs8wuwoGi3W77iIz6b8xbHNG36N0hH7o8rjEfAxLtA-bWt3nE3YjBxuOc9uPgCfPe5976YbQh9m6LdFTu7Moj9fYyO-vslvDqt86zj6fH98ULW749vy4elszJQkamZKML1UHbFlJWLVZKo66wrZoOoEDd8FJyzgsEqLlVFequTJxGoVXdgJPz7GbyHSj2hlx6yK3d4D26aEDqUhaQoNsJGsPwtUeKZjPsg093GahBK6FqUSQKJsqFgShgZ8bQ72w4GODmGLeZ4jYpbnOM2-ikEZOGEutXGP44_yv6AZA5gvc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917626924</pqid></control><display><type>article</type><title>Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia</title><source>Springer Nature - Complete Springer Journals</source><creator>Rodenbough, Philip P. ; Chan, Siu-Wai</creator><creatorcontrib>Rodenbough, Philip P. ; Chan, Siu-Wai ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximum of 165 GPa at an intermediate crystallite size of 14 nm, and then decreased thereafter to 77 GPa at 9 nm. Thermal expansion, meanwhile, decreased continuously to 70% of bulk value at 9 nm. These results are consistent to nano-ceria and together provide important insights into the thermal-mechanical structural properties of oxide nanoparticles.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-017-3922-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bulk modulus ; Cerium oxides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Compressibility ; Inorganic Chemistry ; Lasers ; lattice parameter ; magnesia ; Magnesium oxide ; MATERIALS SCIENCE ; Mechanical properties ; nanoparticle ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Research Paper ; size dependent ; Temperature effects ; Thermal expansion</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2017-07, Vol.19 (7), p.1, Article 241</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Journal of Nanoparticle Research is a copyright of Springer, 2017.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-63b746f1dd4338de867e78ed8bf114e7b0530004e1190a68e7f538d7e2769b1c3</citedby><cites>FETCH-LOGICAL-c343t-63b746f1dd4338de867e78ed8bf114e7b0530004e1190a68e7f538d7e2769b1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-017-3922-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-017-3922-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1375341$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodenbough, Philip P.</creatorcontrib><creatorcontrib>Chan, Siu-Wai</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximum of 165 GPa at an intermediate crystallite size of 14 nm, and then decreased thereafter to 77 GPa at 9 nm. Thermal expansion, meanwhile, decreased continuously to 70% of bulk value at 9 nm. These results are consistent to nano-ceria and together provide important insights into the thermal-mechanical structural properties of oxide nanoparticles.</description><subject>Bulk modulus</subject><subject>Cerium oxides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Compressibility</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>lattice parameter</subject><subject>magnesia</subject><subject>Magnesium oxide</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>nanoparticle</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Research Paper</subject><subject>size dependent</subject><subject>Temperature effects</subject><subject>Thermal expansion</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kD1PwzAQhiMEEqXwA9gimA0-O7GTEVV8SZVYQGKzHOfSpmqd4HOH8utxFQYWpvvQ8766e7PsGvgdcK7vCYCXwDhoJmshmD7JZlBqwapafZ6mXlYV41oV59kF0YZzUKIWs8wuwoGi3W77iIz6b8xbHNG36N0hH7o8rjEfAxLtA-bWt3nE3YjBxuOc9uPgCfPe5976YbQh9m6LdFTu7Moj9fYyO-vslvDqt86zj6fH98ULW749vy4elszJQkamZKML1UHbFlJWLVZKo66wrZoOoEDd8FJyzgsEqLlVFequTJxGoVXdgJPz7GbyHSj2hlx6yK3d4D26aEDqUhaQoNsJGsPwtUeKZjPsg093GahBK6FqUSQKJsqFgShgZ8bQ72w4GODmGLeZ4jYpbnOM2-ikEZOGEutXGP44_yv6AZA5gvc</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Rodenbough, Philip P.</creator><creator>Chan, Siu-Wai</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Tsinghua University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OTOTI</scope></search><sort><creationdate>20170701</creationdate><title>Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia</title><author>Rodenbough, Philip P. ; Chan, Siu-Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-63b746f1dd4338de867e78ed8bf114e7b0530004e1190a68e7f538d7e2769b1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bulk modulus</topic><topic>Cerium oxides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Compressibility</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>lattice parameter</topic><topic>magnesia</topic><topic>Magnesium oxide</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>nanoparticle</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Research Paper</topic><topic>size dependent</topic><topic>Temperature effects</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Rodenbough, Philip P.</creatorcontrib><creatorcontrib>Chan, Siu-Wai</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodenbough, Philip P.</au><au>Chan, Siu-Wai</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>19</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>241</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>We have carefully measured the hydrostatic compressibility and thermal expansion for a series of magnesia nanoparticles. We found a strong variance in these mechanical properties as crystallite size changed. For decreasing crystallite sizes, bulk modulus first increased, then reached a modest maximum of 165 GPa at an intermediate crystallite size of 14 nm, and then decreased thereafter to 77 GPa at 9 nm. Thermal expansion, meanwhile, decreased continuously to 70% of bulk value at 9 nm. These results are consistent to nano-ceria and together provide important insights into the thermal-mechanical structural properties of oxide nanoparticles.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-017-3922-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2017-07, Vol.19 (7), p.1, Article 241 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_osti_scitechconnect_1375341 |
source | Springer Nature - Complete Springer Journals |
subjects | Bulk modulus Cerium oxides Characterization and Evaluation of Materials Chemistry and Materials Science Compressibility Inorganic Chemistry Lasers lattice parameter magnesia Magnesium oxide MATERIALS SCIENCE Mechanical properties nanoparticle Nanoparticles Nanotechnology Optical Devices Optics Photonics Physical Chemistry Research Paper size dependent Temperature effects Thermal expansion |
title | Crystallite-size dependency of the pressure and temperature response in nanoparticles of magnesia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallite-size%20dependency%20of%20the%20pressure%20and%20temperature%20response%20in%20nanoparticles%20of%20magnesia&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Rodenbough,%20Philip%20P.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2017-07-01&rft.volume=19&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=241&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-017-3922-7&rft_dat=%3Cproquest_osti_%3E1917626924%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917626924&rft_id=info:pmid/&rfr_iscdi=true |