Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation

Reductive catalytic fractionation (RCF) of lignocellulosic biomass is a promising lignin-first biorefinery strategy that yields nearly theoretical amounts of phenolic monomers by performing solvolytic delignification and lignin depolymerization in presence of a reducing catalyst, here Ni-Al 2 O 3 ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2017, Vol.19 (14), p.3313-3326
Hauptverfasser: Van den Bosch, S., Renders, T., Kennis, S., Koelewijn, S.-F., Van den Bossche, G., Vangeel, T., Deneyer, A., Depuydt, D., Courtin, C. M., Thevelein, J. M., Schutyser, W., Sels, B. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3326
container_issue 14
container_start_page 3313
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 19
creator Van den Bosch, S.
Renders, T.
Kennis, S.
Koelewijn, S.-F.
Van den Bossche, G.
Vangeel, T.
Deneyer, A.
Depuydt, D.
Courtin, C. M.
Thevelein, J. M.
Schutyser, W.
Sels, B. F.
description Reductive catalytic fractionation (RCF) of lignocellulosic biomass is a promising lignin-first biorefinery strategy that yields nearly theoretical amounts of phenolic monomers by performing solvolytic delignification and lignin depolymerization in presence of a reducing catalyst, here Ni-Al 2 O 3 . This contribution attempts to elucidate the precise role of the catalyst, with respect to lignin solubilization, depolymerization and stabilization. The presented experiments unambiguously show that the solvent, under the applied conditions (methanol at 523 K), is largely responsible for both the initial release of lignin fragments from the lignocellulose matrix and their further depolymerization to shorter phenolics. The catalyst is merely responsible for the hydrogenation of reactive unsaturated side-chains in the solubilized lignin intermediates, leading to the formation of stable phenolic monomers and short oligomers. This catalytic reduction essentially prevents undesirable repolymerization reactions towards a condensed (high MW) lignin product. Since a solid–solid interaction between catalyst and wood is not required for the stabilization of soluble lignin products, the use of catalyst pellets (confined in a reactor basket) as a means to facilitate catalyst recuperation and clean pulp production, is justified. After optimizing the process with regard to mass transfer limitations, above 90% delignification of birch wood is achieved, producing a lignin oil that contains over 40% phenolic monomers, of which 70% consists of 4- n -propanolguaiacol and -syringol. In addition, multiple catalyst recycling experiments are successfully performed. Catalyst fouling is appointed as a primary cause of deactivation, though catalytic activity can be fully restored by thermal H 2 -treatment. Simple filtration of the reaction mixture finally affords a catalyst-free and delignified pulp, containing most of the initial cellulose and hemicellulose (93% glucose and 83% xylose retention). This pulp is converted into bio-ethanol, through simultaneous saccharification (accelerase trio enzyme mix) and fermentation (GSE16-T18-HAA1* yeast). A first and unprecedented trial led to a 73% bio-ethanol yield.
doi_str_mv 10.1039/C7GC01324H
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1375115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C7GC01324H</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1035-67ed2a5b320ad37d4fdd0146332affead093e235cdd2c9a8673df3edbcfa77ab3</originalsourceid><addsrcrecordid>eNpFUNtKAzEUDKJgvbz4BcFHYTWX3Y3rW1m0LRT7os_L2VzaSExKkgr1D_xrt63YpzOcGWaYQeiGkntKePPQiklLKGfl9ASNaFnzomGCnP7jmp2ji5Q-CKFU1OUI_cx81ssI2foldnbprcdf4EK038MveAxe4d6GQucV-ODwOga1kTvqCQ90Xmkcg9M4GPxqi7HDDC8wxxIyuG3KeK2d0zlhtYnHiMLYOHAmwt5pn3SFzgy4pK__7iV6f3l-a6fFfDGZteN5IYeGVVELrRhUPWcEFBeqNEqRXTvOwBgNijRcM15JpZhs4LEWXBmuVS8NCAE9v0S3B9-Qsu2StFnLlQzea5k7ykVFaTWI7g4iGUNKUZtuHe0nxG1HSbdbujsuzX8BX1dzRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Van den Bosch, S. ; Renders, T. ; Kennis, S. ; Koelewijn, S.-F. ; Van den Bossche, G. ; Vangeel, T. ; Deneyer, A. ; Depuydt, D. ; Courtin, C. M. ; Thevelein, J. M. ; Schutyser, W. ; Sels, B. F.</creator><creatorcontrib>Van den Bosch, S. ; Renders, T. ; Kennis, S. ; Koelewijn, S.-F. ; Van den Bossche, G. ; Vangeel, T. ; Deneyer, A. ; Depuydt, D. ; Courtin, C. M. ; Thevelein, J. M. ; Schutyser, W. ; Sels, B. F. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Reductive catalytic fractionation (RCF) of lignocellulosic biomass is a promising lignin-first biorefinery strategy that yields nearly theoretical amounts of phenolic monomers by performing solvolytic delignification and lignin depolymerization in presence of a reducing catalyst, here Ni-Al 2 O 3 . This contribution attempts to elucidate the precise role of the catalyst, with respect to lignin solubilization, depolymerization and stabilization. The presented experiments unambiguously show that the solvent, under the applied conditions (methanol at 523 K), is largely responsible for both the initial release of lignin fragments from the lignocellulose matrix and their further depolymerization to shorter phenolics. The catalyst is merely responsible for the hydrogenation of reactive unsaturated side-chains in the solubilized lignin intermediates, leading to the formation of stable phenolic monomers and short oligomers. This catalytic reduction essentially prevents undesirable repolymerization reactions towards a condensed (high MW) lignin product. Since a solid–solid interaction between catalyst and wood is not required for the stabilization of soluble lignin products, the use of catalyst pellets (confined in a reactor basket) as a means to facilitate catalyst recuperation and clean pulp production, is justified. After optimizing the process with regard to mass transfer limitations, above 90% delignification of birch wood is achieved, producing a lignin oil that contains over 40% phenolic monomers, of which 70% consists of 4- n -propanolguaiacol and -syringol. In addition, multiple catalyst recycling experiments are successfully performed. Catalyst fouling is appointed as a primary cause of deactivation, though catalytic activity can be fully restored by thermal H 2 -treatment. Simple filtration of the reaction mixture finally affords a catalyst-free and delignified pulp, containing most of the initial cellulose and hemicellulose (93% glucose and 83% xylose retention). This pulp is converted into bio-ethanol, through simultaneous saccharification (accelerase trio enzyme mix) and fermentation (GSE16-T18-HAA1* yeast). A first and unprecedented trial led to a 73% bio-ethanol yield.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/C7GC01324H</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>09 BIOMASS FUELS ; biorefineries ; lignocellulosic biomass ; reductive catalytic fractionation</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2017, Vol.19 (14), p.3313-3326</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1035-67ed2a5b320ad37d4fdd0146332affead093e235cdd2c9a8673df3edbcfa77ab3</citedby><cites>FETCH-LOGICAL-c1035-67ed2a5b320ad37d4fdd0146332affead093e235cdd2c9a8673df3edbcfa77ab3</cites><orcidid>0000-0001-9657-1710 ; 0000-0002-2626-0180 ; 0000000226260180 ; 0000000196571710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1375115$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Van den Bosch, S.</creatorcontrib><creatorcontrib>Renders, T.</creatorcontrib><creatorcontrib>Kennis, S.</creatorcontrib><creatorcontrib>Koelewijn, S.-F.</creatorcontrib><creatorcontrib>Van den Bossche, G.</creatorcontrib><creatorcontrib>Vangeel, T.</creatorcontrib><creatorcontrib>Deneyer, A.</creatorcontrib><creatorcontrib>Depuydt, D.</creatorcontrib><creatorcontrib>Courtin, C. M.</creatorcontrib><creatorcontrib>Thevelein, J. M.</creatorcontrib><creatorcontrib>Schutyser, W.</creatorcontrib><creatorcontrib>Sels, B. F.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Reductive catalytic fractionation (RCF) of lignocellulosic biomass is a promising lignin-first biorefinery strategy that yields nearly theoretical amounts of phenolic monomers by performing solvolytic delignification and lignin depolymerization in presence of a reducing catalyst, here Ni-Al 2 O 3 . This contribution attempts to elucidate the precise role of the catalyst, with respect to lignin solubilization, depolymerization and stabilization. The presented experiments unambiguously show that the solvent, under the applied conditions (methanol at 523 K), is largely responsible for both the initial release of lignin fragments from the lignocellulose matrix and their further depolymerization to shorter phenolics. The catalyst is merely responsible for the hydrogenation of reactive unsaturated side-chains in the solubilized lignin intermediates, leading to the formation of stable phenolic monomers and short oligomers. This catalytic reduction essentially prevents undesirable repolymerization reactions towards a condensed (high MW) lignin product. Since a solid–solid interaction between catalyst and wood is not required for the stabilization of soluble lignin products, the use of catalyst pellets (confined in a reactor basket) as a means to facilitate catalyst recuperation and clean pulp production, is justified. After optimizing the process with regard to mass transfer limitations, above 90% delignification of birch wood is achieved, producing a lignin oil that contains over 40% phenolic monomers, of which 70% consists of 4- n -propanolguaiacol and -syringol. In addition, multiple catalyst recycling experiments are successfully performed. Catalyst fouling is appointed as a primary cause of deactivation, though catalytic activity can be fully restored by thermal H 2 -treatment. Simple filtration of the reaction mixture finally affords a catalyst-free and delignified pulp, containing most of the initial cellulose and hemicellulose (93% glucose and 83% xylose retention). This pulp is converted into bio-ethanol, through simultaneous saccharification (accelerase trio enzyme mix) and fermentation (GSE16-T18-HAA1* yeast). A first and unprecedented trial led to a 73% bio-ethanol yield.</description><subject>09 BIOMASS FUELS</subject><subject>biorefineries</subject><subject>lignocellulosic biomass</subject><subject>reductive catalytic fractionation</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFUNtKAzEUDKJgvbz4BcFHYTWX3Y3rW1m0LRT7os_L2VzaSExKkgr1D_xrt63YpzOcGWaYQeiGkntKePPQiklLKGfl9ASNaFnzomGCnP7jmp2ji5Q-CKFU1OUI_cx81ssI2foldnbprcdf4EK038MveAxe4d6GQucV-ODwOga1kTvqCQ90Xmkcg9M4GPxqi7HDDC8wxxIyuG3KeK2d0zlhtYnHiMLYOHAmwt5pn3SFzgy4pK__7iV6f3l-a6fFfDGZteN5IYeGVVELrRhUPWcEFBeqNEqRXTvOwBgNijRcM15JpZhs4LEWXBmuVS8NCAE9v0S3B9-Qsu2StFnLlQzea5k7ykVFaTWI7g4iGUNKUZtuHe0nxG1HSbdbujsuzX8BX1dzRQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Van den Bosch, S.</creator><creator>Renders, T.</creator><creator>Kennis, S.</creator><creator>Koelewijn, S.-F.</creator><creator>Van den Bossche, G.</creator><creator>Vangeel, T.</creator><creator>Deneyer, A.</creator><creator>Depuydt, D.</creator><creator>Courtin, C. M.</creator><creator>Thevelein, J. M.</creator><creator>Schutyser, W.</creator><creator>Sels, B. F.</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9657-1710</orcidid><orcidid>https://orcid.org/0000-0002-2626-0180</orcidid><orcidid>https://orcid.org/0000000226260180</orcidid><orcidid>https://orcid.org/0000000196571710</orcidid></search><sort><creationdate>2017</creationdate><title>Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation</title><author>Van den Bosch, S. ; Renders, T. ; Kennis, S. ; Koelewijn, S.-F. ; Van den Bossche, G. ; Vangeel, T. ; Deneyer, A. ; Depuydt, D. ; Courtin, C. M. ; Thevelein, J. M. ; Schutyser, W. ; Sels, B. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1035-67ed2a5b320ad37d4fdd0146332affead093e235cdd2c9a8673df3edbcfa77ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>09 BIOMASS FUELS</topic><topic>biorefineries</topic><topic>lignocellulosic biomass</topic><topic>reductive catalytic fractionation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van den Bosch, S.</creatorcontrib><creatorcontrib>Renders, T.</creatorcontrib><creatorcontrib>Kennis, S.</creatorcontrib><creatorcontrib>Koelewijn, S.-F.</creatorcontrib><creatorcontrib>Van den Bossche, G.</creatorcontrib><creatorcontrib>Vangeel, T.</creatorcontrib><creatorcontrib>Deneyer, A.</creatorcontrib><creatorcontrib>Depuydt, D.</creatorcontrib><creatorcontrib>Courtin, C. M.</creatorcontrib><creatorcontrib>Thevelein, J. M.</creatorcontrib><creatorcontrib>Schutyser, W.</creatorcontrib><creatorcontrib>Sels, B. F.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van den Bosch, S.</au><au>Renders, T.</au><au>Kennis, S.</au><au>Koelewijn, S.-F.</au><au>Van den Bossche, G.</au><au>Vangeel, T.</au><au>Deneyer, A.</au><au>Depuydt, D.</au><au>Courtin, C. M.</au><au>Thevelein, J. M.</au><au>Schutyser, W.</au><au>Sels, B. F.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>14</issue><spage>3313</spage><epage>3326</epage><pages>3313-3326</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Reductive catalytic fractionation (RCF) of lignocellulosic biomass is a promising lignin-first biorefinery strategy that yields nearly theoretical amounts of phenolic monomers by performing solvolytic delignification and lignin depolymerization in presence of a reducing catalyst, here Ni-Al 2 O 3 . This contribution attempts to elucidate the precise role of the catalyst, with respect to lignin solubilization, depolymerization and stabilization. The presented experiments unambiguously show that the solvent, under the applied conditions (methanol at 523 K), is largely responsible for both the initial release of lignin fragments from the lignocellulose matrix and their further depolymerization to shorter phenolics. The catalyst is merely responsible for the hydrogenation of reactive unsaturated side-chains in the solubilized lignin intermediates, leading to the formation of stable phenolic monomers and short oligomers. This catalytic reduction essentially prevents undesirable repolymerization reactions towards a condensed (high MW) lignin product. Since a solid–solid interaction between catalyst and wood is not required for the stabilization of soluble lignin products, the use of catalyst pellets (confined in a reactor basket) as a means to facilitate catalyst recuperation and clean pulp production, is justified. After optimizing the process with regard to mass transfer limitations, above 90% delignification of birch wood is achieved, producing a lignin oil that contains over 40% phenolic monomers, of which 70% consists of 4- n -propanolguaiacol and -syringol. In addition, multiple catalyst recycling experiments are successfully performed. Catalyst fouling is appointed as a primary cause of deactivation, though catalytic activity can be fully restored by thermal H 2 -treatment. Simple filtration of the reaction mixture finally affords a catalyst-free and delignified pulp, containing most of the initial cellulose and hemicellulose (93% glucose and 83% xylose retention). This pulp is converted into bio-ethanol, through simultaneous saccharification (accelerase trio enzyme mix) and fermentation (GSE16-T18-HAA1* yeast). A first and unprecedented trial led to a 73% bio-ethanol yield.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7GC01324H</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9657-1710</orcidid><orcidid>https://orcid.org/0000-0002-2626-0180</orcidid><orcidid>https://orcid.org/0000000226260180</orcidid><orcidid>https://orcid.org/0000000196571710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2017, Vol.19 (14), p.3313-3326
issn 1463-9262
1463-9270
language eng
recordid cdi_osti_scitechconnect_1375115
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects 09 BIOMASS FUELS
biorefineries
lignocellulosic biomass
reductive catalytic fractionation
title Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al 2 O 3 catalyst pellets during lignin-first fractionation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20lignin%20valorization%20and%20bio-ethanol%20production:%20on%20the%20role%20of%20Ni-Al%202%20O%203%20catalyst%20pellets%20during%20lignin-first%20fractionation&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Van%20den%20Bosch,%20S.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017&rft.volume=19&rft.issue=14&rft.spage=3313&rft.epage=3326&rft.pages=3313-3326&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/C7GC01324H&rft_dat=%3Ccrossref_osti_%3E10_1039_C7GC01324H%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true