Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors
Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-08, Vol.29 (31), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 29 |
creator | Chen, Xuegang Zhang, Xin Koten, Mark A. Chen, Hanghui Xiao, Zhiyong Zhang, Le Shield, Jeffrey E. Dowben, Peter A. Hong, Xia |
description | Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications.
Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics. |
doi_str_mv | 10.1002/adma.201701385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1375058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911200839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</originalsourceid><addsrcrecordid>eNqF0bFuFDEQBmALgcgRaCnRChqavYzttdcuT0cCkXJKE2rL6529ONqzg-0TSscj8Iw8CY4uJFIaqmm--WXPT8h7CksKwE7suLNLBrQHypV4QRZUMNp2oMVLsgDNRatlp47Im5xvAEBLkK_JEVOSKdarBdmch4Jpss7buVlf27TF5jRsfUBMPmwbH5ozTCnijK4k7_78-r2OoaQ4zzg2m1hKc5VsyD6XmPJb8mqyc8Z3D_OYfD87vVp_ay8uv56vVxetEyBFO4nRqaGf6OS47lg_jg5ADkJRpIpzJ8FiD71Fx5xUExcwoZB6sFYNcpSWH5OPh9yYizfZ-YLu2sUQ6iMN5b0AoSr6fEC3Kf7YYy5m57PDebYB4z4bqillAIrrSj89ozdxn0L9QlX1WNDJTlS1PCiXYs4JJ3Ob_M6mO0PB3Ldh7tswj23UhQ8Psfthh-Mj_3f-CvQB_PQz3v0nzqy-bFZP4X8BxAOWyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928604645</pqid></control><display><type>article</type><title>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</title><source>Wiley Journals</source><creator>Chen, Xuegang ; Zhang, Xin ; Koten, Mark A. ; Chen, Hanghui ; Xiao, Zhiyong ; Zhang, Le ; Shield, Jeffrey E. ; Dowben, Peter A. ; Hong, Xia</creator><creatorcontrib>Chen, Xuegang ; Zhang, Xin ; Koten, Mark A. ; Chen, Hanghui ; Xiao, Zhiyong ; Zhang, Le ; Shield, Jeffrey E. ; Dowben, Peter A. ; Hong, Xia</creatorcontrib><description>Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications.
Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201701385</identifier><identifier>PMID: 28628278</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Channels ; Charge transfer ; complex oxide interfaces ; Density functional theory ; ferroelectric field effect ; Ferroelectric materials ; Field effect transistors ; Heterostructures ; Lead zirconate titanates ; Manganese ; Materials science ; Mott insulators ; Oxides ; Photoelectron spectroscopy ; Semiconductor devices ; Spectroscopic analysis ; Spectrum analysis ; strongly correlated oxides ; Switching ; Transistors ; Unit cell ; X-rays ; Zirconium</subject><ispartof>Advanced materials (Weinheim), 2017-08, Vol.29 (31), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</citedby><cites>FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</cites><orcidid>0000-0002-7873-5774 ; 0000000278735774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201701385$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201701385$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28628278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1375058$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xuegang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Koten, Mark A.</creatorcontrib><creatorcontrib>Chen, Hanghui</creatorcontrib><creatorcontrib>Xiao, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Dowben, Peter A.</creatorcontrib><creatorcontrib>Hong, Xia</creatorcontrib><title>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications.
Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics.</description><subject>Channels</subject><subject>Charge transfer</subject><subject>complex oxide interfaces</subject><subject>Density functional theory</subject><subject>ferroelectric field effect</subject><subject>Ferroelectric materials</subject><subject>Field effect transistors</subject><subject>Heterostructures</subject><subject>Lead zirconate titanates</subject><subject>Manganese</subject><subject>Materials science</subject><subject>Mott insulators</subject><subject>Oxides</subject><subject>Photoelectron spectroscopy</subject><subject>Semiconductor devices</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>strongly correlated oxides</subject><subject>Switching</subject><subject>Transistors</subject><subject>Unit cell</subject><subject>X-rays</subject><subject>Zirconium</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0bFuFDEQBmALgcgRaCnRChqavYzttdcuT0cCkXJKE2rL6529ONqzg-0TSscj8Iw8CY4uJFIaqmm--WXPT8h7CksKwE7suLNLBrQHypV4QRZUMNp2oMVLsgDNRatlp47Im5xvAEBLkK_JEVOSKdarBdmch4Jpss7buVlf27TF5jRsfUBMPmwbH5ozTCnijK4k7_78-r2OoaQ4zzg2m1hKc5VsyD6XmPJb8mqyc8Z3D_OYfD87vVp_ay8uv56vVxetEyBFO4nRqaGf6OS47lg_jg5ADkJRpIpzJ8FiD71Fx5xUExcwoZB6sFYNcpSWH5OPh9yYizfZ-YLu2sUQ6iMN5b0AoSr6fEC3Kf7YYy5m57PDebYB4z4bqillAIrrSj89ozdxn0L9QlX1WNDJTlS1PCiXYs4JJ3Ob_M6mO0PB3Ldh7tswj23UhQ8Psfthh-Mj_3f-CvQB_PQz3v0nzqy-bFZP4X8BxAOWyA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Chen, Xuegang</creator><creator>Zhang, Xin</creator><creator>Koten, Mark A.</creator><creator>Chen, Hanghui</creator><creator>Xiao, Zhiyong</creator><creator>Zhang, Le</creator><creator>Shield, Jeffrey E.</creator><creator>Dowben, Peter A.</creator><creator>Hong, Xia</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7873-5774</orcidid><orcidid>https://orcid.org/0000000278735774</orcidid></search><sort><creationdate>201708</creationdate><title>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</title><author>Chen, Xuegang ; Zhang, Xin ; Koten, Mark A. ; Chen, Hanghui ; Xiao, Zhiyong ; Zhang, Le ; Shield, Jeffrey E. ; Dowben, Peter A. ; Hong, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channels</topic><topic>Charge transfer</topic><topic>complex oxide interfaces</topic><topic>Density functional theory</topic><topic>ferroelectric field effect</topic><topic>Ferroelectric materials</topic><topic>Field effect transistors</topic><topic>Heterostructures</topic><topic>Lead zirconate titanates</topic><topic>Manganese</topic><topic>Materials science</topic><topic>Mott insulators</topic><topic>Oxides</topic><topic>Photoelectron spectroscopy</topic><topic>Semiconductor devices</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>strongly correlated oxides</topic><topic>Switching</topic><topic>Transistors</topic><topic>Unit cell</topic><topic>X-rays</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuegang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Koten, Mark A.</creatorcontrib><creatorcontrib>Chen, Hanghui</creatorcontrib><creatorcontrib>Xiao, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Dowben, Peter A.</creatorcontrib><creatorcontrib>Hong, Xia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuegang</au><au>Zhang, Xin</au><au>Koten, Mark A.</au><au>Chen, Hanghui</au><au>Xiao, Zhiyong</au><au>Zhang, Le</au><au>Shield, Jeffrey E.</au><au>Dowben, Peter A.</au><au>Hong, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-08</date><risdate>2017</risdate><volume>29</volume><issue>31</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications.
Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28628278</pmid><doi>10.1002/adma.201701385</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7873-5774</orcidid><orcidid>https://orcid.org/0000000278735774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2017-08, Vol.29 (31), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1375058 |
source | Wiley Journals |
subjects | Channels Charge transfer complex oxide interfaces Density functional theory ferroelectric field effect Ferroelectric materials Field effect transistors Heterostructures Lead zirconate titanates Manganese Materials science Mott insulators Oxides Photoelectron spectroscopy Semiconductor devices Spectroscopic analysis Spectrum analysis strongly correlated oxides Switching Transistors Unit cell X-rays Zirconium |
title | Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Charge%20Engineering%20in%20Ferroelectric%E2%80%90Controlled%20Mott%20Transistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Xuegang&rft.date=2017-08&rft.volume=29&rft.issue=31&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201701385&rft_dat=%3Cproquest_osti_%3E1911200839%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928604645&rft_id=info:pmid/28628278&rfr_iscdi=true |