Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors

Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-08, Vol.29 (31), p.n/a
Hauptverfasser: Chen, Xuegang, Zhang, Xin, Koten, Mark A., Chen, Hanghui, Xiao, Zhiyong, Zhang, Le, Shield, Jeffrey E., Dowben, Peter A., Hong, Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Chen, Xuegang
Zhang, Xin
Koten, Mark A.
Chen, Hanghui
Xiao, Zhiyong
Zhang, Le
Shield, Jeffrey E.
Dowben, Peter A.
Hong, Xia
description Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications. Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics.
doi_str_mv 10.1002/adma.201701385
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1375058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911200839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</originalsourceid><addsrcrecordid>eNqF0bFuFDEQBmALgcgRaCnRChqavYzttdcuT0cCkXJKE2rL6529ONqzg-0TSscj8Iw8CY4uJFIaqmm--WXPT8h7CksKwE7suLNLBrQHypV4QRZUMNp2oMVLsgDNRatlp47Im5xvAEBLkK_JEVOSKdarBdmch4Jpss7buVlf27TF5jRsfUBMPmwbH5ozTCnijK4k7_78-r2OoaQ4zzg2m1hKc5VsyD6XmPJb8mqyc8Z3D_OYfD87vVp_ay8uv56vVxetEyBFO4nRqaGf6OS47lg_jg5ADkJRpIpzJ8FiD71Fx5xUExcwoZB6sFYNcpSWH5OPh9yYizfZ-YLu2sUQ6iMN5b0AoSr6fEC3Kf7YYy5m57PDebYB4z4bqillAIrrSj89ozdxn0L9QlX1WNDJTlS1PCiXYs4JJ3Ob_M6mO0PB3Ldh7tswj23UhQ8Psfthh-Mj_3f-CvQB_PQz3v0nzqy-bFZP4X8BxAOWyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928604645</pqid></control><display><type>article</type><title>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</title><source>Wiley Journals</source><creator>Chen, Xuegang ; Zhang, Xin ; Koten, Mark A. ; Chen, Hanghui ; Xiao, Zhiyong ; Zhang, Le ; Shield, Jeffrey E. ; Dowben, Peter A. ; Hong, Xia</creator><creatorcontrib>Chen, Xuegang ; Zhang, Xin ; Koten, Mark A. ; Chen, Hanghui ; Xiao, Zhiyong ; Zhang, Le ; Shield, Jeffrey E. ; Dowben, Peter A. ; Hong, Xia</creatorcontrib><description>Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications. Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201701385</identifier><identifier>PMID: 28628278</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Channels ; Charge transfer ; complex oxide interfaces ; Density functional theory ; ferroelectric field effect ; Ferroelectric materials ; Field effect transistors ; Heterostructures ; Lead zirconate titanates ; Manganese ; Materials science ; Mott insulators ; Oxides ; Photoelectron spectroscopy ; Semiconductor devices ; Spectroscopic analysis ; Spectrum analysis ; strongly correlated oxides ; Switching ; Transistors ; Unit cell ; X-rays ; Zirconium</subject><ispartof>Advanced materials (Weinheim), 2017-08, Vol.29 (31), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</citedby><cites>FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</cites><orcidid>0000-0002-7873-5774 ; 0000000278735774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201701385$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201701385$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28628278$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1375058$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xuegang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Koten, Mark A.</creatorcontrib><creatorcontrib>Chen, Hanghui</creatorcontrib><creatorcontrib>Xiao, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Dowben, Peter A.</creatorcontrib><creatorcontrib>Hong, Xia</creatorcontrib><title>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications. Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics.</description><subject>Channels</subject><subject>Charge transfer</subject><subject>complex oxide interfaces</subject><subject>Density functional theory</subject><subject>ferroelectric field effect</subject><subject>Ferroelectric materials</subject><subject>Field effect transistors</subject><subject>Heterostructures</subject><subject>Lead zirconate titanates</subject><subject>Manganese</subject><subject>Materials science</subject><subject>Mott insulators</subject><subject>Oxides</subject><subject>Photoelectron spectroscopy</subject><subject>Semiconductor devices</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>strongly correlated oxides</subject><subject>Switching</subject><subject>Transistors</subject><subject>Unit cell</subject><subject>X-rays</subject><subject>Zirconium</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0bFuFDEQBmALgcgRaCnRChqavYzttdcuT0cCkXJKE2rL6529ONqzg-0TSscj8Iw8CY4uJFIaqmm--WXPT8h7CksKwE7suLNLBrQHypV4QRZUMNp2oMVLsgDNRatlp47Im5xvAEBLkK_JEVOSKdarBdmch4Jpss7buVlf27TF5jRsfUBMPmwbH5ozTCnijK4k7_78-r2OoaQ4zzg2m1hKc5VsyD6XmPJb8mqyc8Z3D_OYfD87vVp_ay8uv56vVxetEyBFO4nRqaGf6OS47lg_jg5ADkJRpIpzJ8FiD71Fx5xUExcwoZB6sFYNcpSWH5OPh9yYizfZ-YLu2sUQ6iMN5b0AoSr6fEC3Kf7YYy5m57PDebYB4z4bqillAIrrSj89ozdxn0L9QlX1WNDJTlS1PCiXYs4JJ3Ob_M6mO0PB3Ldh7tswj23UhQ8Psfthh-Mj_3f-CvQB_PQz3v0nzqy-bFZP4X8BxAOWyA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Chen, Xuegang</creator><creator>Zhang, Xin</creator><creator>Koten, Mark A.</creator><creator>Chen, Hanghui</creator><creator>Xiao, Zhiyong</creator><creator>Zhang, Le</creator><creator>Shield, Jeffrey E.</creator><creator>Dowben, Peter A.</creator><creator>Hong, Xia</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7873-5774</orcidid><orcidid>https://orcid.org/0000000278735774</orcidid></search><sort><creationdate>201708</creationdate><title>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</title><author>Chen, Xuegang ; Zhang, Xin ; Koten, Mark A. ; Chen, Hanghui ; Xiao, Zhiyong ; Zhang, Le ; Shield, Jeffrey E. ; Dowben, Peter A. ; Hong, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5065-f5dc8b7f1fc39427ddc006b581e1833c60ae707aec2c68f350fe569baa8b6d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channels</topic><topic>Charge transfer</topic><topic>complex oxide interfaces</topic><topic>Density functional theory</topic><topic>ferroelectric field effect</topic><topic>Ferroelectric materials</topic><topic>Field effect transistors</topic><topic>Heterostructures</topic><topic>Lead zirconate titanates</topic><topic>Manganese</topic><topic>Materials science</topic><topic>Mott insulators</topic><topic>Oxides</topic><topic>Photoelectron spectroscopy</topic><topic>Semiconductor devices</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>strongly correlated oxides</topic><topic>Switching</topic><topic>Transistors</topic><topic>Unit cell</topic><topic>X-rays</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuegang</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Koten, Mark A.</creatorcontrib><creatorcontrib>Chen, Hanghui</creatorcontrib><creatorcontrib>Xiao, Zhiyong</creatorcontrib><creatorcontrib>Zhang, Le</creatorcontrib><creatorcontrib>Shield, Jeffrey E.</creatorcontrib><creatorcontrib>Dowben, Peter A.</creatorcontrib><creatorcontrib>Hong, Xia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuegang</au><au>Zhang, Xin</au><au>Koten, Mark A.</au><au>Chen, Hanghui</au><au>Xiao, Zhiyong</au><au>Zhang, Le</au><au>Shield, Jeffrey E.</au><au>Dowben, Peter A.</au><au>Hong, Xia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-08</date><risdate>2017</risdate><volume>29</volume><issue>31</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Heteroepitaxial coupling at complex oxide interfaces presents a powerful tool for engineering the charge degree of freedom in strongly correlated materials, which can be utilized to achieve tailored functionalities that are inaccessible in the bulk form. Here, the charge‐transfer effect between two strongly correlated oxides, Sm0.5Nd0.5NiO3 (SNNO) and La0.67Sr0.33MnO3 (LSMO), is exploited to realize a giant enhancement of the ferroelectric field effect in a prototype Mott field‐effect transistor. By switching the polarization field of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate, nonvolatile resistance modulation in the Mott transistors with single‐layer SNNO and bilayer SNNO/LSMO channels is induced. For the same channel thickness, the bilayer channels exhibit up to two orders of magnitude higher resistance‐switching ratio at 300 K, which is attributed to the intricate interplay between the charge screening at the PZT/SNNO interface and the charge transfer at the SNNO/LSMO interface. X‐ray absorption spectroscopy and X‐ray photoelectron spectroscopy studies of SNNO/LSMO heterostructures reveal about 0.1 electron per 2D unit cell transferred between the interfacial Mn and Ni layers, which is corroborated by first‐principles density functional theory calculations. The study points to an effective strategy to design functional complex oxide interfaces for developing high‐performance nanoelectronic and spintronic applications. Nonvolatile resistance modulation controlled by ferroelectric Pb(Zr,Ti)O3 gates is realized in Mott transistors based on Sm0.5Nd0.5NiO3 and Sm0.5Nd0.5NiO3/La0.67Sr0.33MnO3 channels, with the bilayer channels exhibiting up to two orders of magnitude higher resistance‐switching ratio at 300 K. This work points to an effective strategy to exploiting the charge‐transfer effect at heteroepitaxial oxide interfaces for developing high‐performance nanoelectronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28628278</pmid><doi>10.1002/adma.201701385</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7873-5774</orcidid><orcidid>https://orcid.org/0000000278735774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-08, Vol.29 (31), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1375058
source Wiley Journals
subjects Channels
Charge transfer
complex oxide interfaces
Density functional theory
ferroelectric field effect
Ferroelectric materials
Field effect transistors
Heterostructures
Lead zirconate titanates
Manganese
Materials science
Mott insulators
Oxides
Photoelectron spectroscopy
Semiconductor devices
Spectroscopic analysis
Spectrum analysis
strongly correlated oxides
Switching
Transistors
Unit cell
X-rays
Zirconium
title Interfacial Charge Engineering in Ferroelectric‐Controlled Mott Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Charge%20Engineering%20in%20Ferroelectric%E2%80%90Controlled%20Mott%20Transistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Xuegang&rft.date=2017-08&rft.volume=29&rft.issue=31&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201701385&rft_dat=%3Cproquest_osti_%3E1911200839%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1928604645&rft_id=info:pmid/28628278&rfr_iscdi=true