Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

A novel microfabricated optically transparent thin-film electrode chip for fluorescence and absorption spectroelectrochemistry has been developed. The working electrode was composed of indium tin oxide (ITO); the quasi-reference and auxiliary electrodes were composed of platinum. The stability of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-07, Vol.89 (14), p.7324-7332
Hauptverfasser: Branch, Shirmir D, Lines, Amanda M, Lynch, John, Bello, Job M, Heineman, William R, Bryan, Samuel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7332
container_issue 14
container_start_page 7324
container_title Analytical chemistry (Washington)
container_volume 89
creator Branch, Shirmir D
Lines, Amanda M
Lynch, John
Bello, Job M
Heineman, William R
Bryan, Samuel A
description A novel microfabricated optically transparent thin-film electrode chip for fluorescence and absorption spectroelectrochemistry has been developed. The working electrode was composed of indium tin oxide (ITO); the quasi-reference and auxiliary electrodes were composed of platinum. The stability of the platinum quasi-reference electrode was improved by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference was characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry measurements showed that the electrode chip was comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe­(CN)6] in 0.1 M KCl using the electrode chip gave a diffusion coefficient of 1.59 × 10–6 cm2/s, in comparison to the value of 2.38 × 10–6 cm2/s using a standard electrochemical cell. By using the electrode chip in an optically transparent thin-layer electrode (OTTLE), the absorption based spectroelectrochemical modulation of [Fe­(CN)6]3–/4– was demonstrated, as well as the fluorescence based modulation of [Ru­(bpy)3]2+/3+. For the fluorescence spectroelectrochemical determination of [Ru­(bpy)3]2+, a detection limit of 36 nM was observed.
doi_str_mv 10.1021/acs.analchem.7b00258
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1374640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940960405</sourcerecordid><originalsourceid>FETCH-LOGICAL-a506t-5601173a6beb1c747bc2a2f839d032edf310158091a3680df1eec547545ad2fa3</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMoOj7-gUjRjZuON2mTtksZfIEg4rgOaXrrRNq0Jp3F_HtTOyq4cHUh9zvnHnIIOaUwp8DoldJ-rqxq9ArbeVYCMJ7vkBnlDGKR52yXzAAgiVkGcEAOvX8HoBSo2CcHLBfAeU5n5PmpH4xWTbOJlk5Z3yuHdoiWK2PjW9O00U2DenBdhdFiZfqo7lz00n894bQZ748O0Qtab-zbMdmrVePxZDuPyOvtzXJxHz8-3T0srh9jxUEMMRchTZYoUWJJdZZmpWaK1XlSVJAwrOokZOU5FFQlIoeqpoiapxlPuapYrZIjcj75dn4w0mszoF7pztqQStIkS0UKAbqcoN51H2v0g2yN19g0ymK39pIWUDAQkLGAXvxB37u1Cx88UikUAlLggUonSrvOe4e17J1pldtICnLsRYZe5HcvcttLkJ1tzddli9WP6LuIAMAEjPLfw_95fgIct5tB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940960405</pqid></control><display><type>article</type><title>Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing</title><source>American Chemical Society Journals</source><creator>Branch, Shirmir D ; Lines, Amanda M ; Lynch, John ; Bello, Job M ; Heineman, William R ; Bryan, Samuel A</creator><creatorcontrib>Branch, Shirmir D ; Lines, Amanda M ; Lynch, John ; Bello, Job M ; Heineman, William R ; Bryan, Samuel A ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>A novel microfabricated optically transparent thin-film electrode chip for fluorescence and absorption spectroelectrochemistry has been developed. The working electrode was composed of indium tin oxide (ITO); the quasi-reference and auxiliary electrodes were composed of platinum. The stability of the platinum quasi-reference electrode was improved by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference was characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry measurements showed that the electrode chip was comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe­(CN)6] in 0.1 M KCl using the electrode chip gave a diffusion coefficient of 1.59 × 10–6 cm2/s, in comparison to the value of 2.38 × 10–6 cm2/s using a standard electrochemical cell. By using the electrode chip in an optically transparent thin-layer electrode (OTTLE), the absorption based spectroelectrochemical modulation of [Fe­(CN)6]3–/4– was demonstrated, as well as the fluorescence based modulation of [Ru­(bpy)3]2+/3+. For the fluorescence spectroelectrochemical determination of [Ru­(bpy)3]2+, a detection limit of 36 nM was observed.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b00258</identifier><identifier>PMID: 28605581</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption ; Ag/AgCl ; Chemistry ; Coated electrodes ; Diffusion coefficient ; Electrochemistry ; Electrodes ; Electron microscopy ; Fluorescence ; Indium tin oxides ; Iron ; Modulation ; optically transparent thin layer electrode ; Optics ; Platinum ; Potassium chloride ; reference electrode ; Ruthenium ; Scanning electron microscopy ; Solid state ; Spectroelectrochemistry ; Spectroscopy ; Thin films ; Tin ; X-ray spectroscopy</subject><ispartof>Analytical chemistry (Washington), 2017-07, Vol.89 (14), p.7324-7332</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Jul 18, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a506t-5601173a6beb1c747bc2a2f839d032edf310158091a3680df1eec547545ad2fa3</citedby><cites>FETCH-LOGICAL-a506t-5601173a6beb1c747bc2a2f839d032edf310158091a3680df1eec547545ad2fa3</cites><orcidid>0000-0002-8826-0880 ; 0000-0003-2428-5445 ; 0000000324285445 ; 0000000288260880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.7b00258$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.7b00258$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28605581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1374640$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Branch, Shirmir D</creatorcontrib><creatorcontrib>Lines, Amanda M</creatorcontrib><creatorcontrib>Lynch, John</creatorcontrib><creatorcontrib>Bello, Job M</creatorcontrib><creatorcontrib>Heineman, William R</creatorcontrib><creatorcontrib>Bryan, Samuel A</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A novel microfabricated optically transparent thin-film electrode chip for fluorescence and absorption spectroelectrochemistry has been developed. The working electrode was composed of indium tin oxide (ITO); the quasi-reference and auxiliary electrodes were composed of platinum. The stability of the platinum quasi-reference electrode was improved by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference was characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry measurements showed that the electrode chip was comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe­(CN)6] in 0.1 M KCl using the electrode chip gave a diffusion coefficient of 1.59 × 10–6 cm2/s, in comparison to the value of 2.38 × 10–6 cm2/s using a standard electrochemical cell. By using the electrode chip in an optically transparent thin-layer electrode (OTTLE), the absorption based spectroelectrochemical modulation of [Fe­(CN)6]3–/4– was demonstrated, as well as the fluorescence based modulation of [Ru­(bpy)3]2+/3+. For the fluorescence spectroelectrochemical determination of [Ru­(bpy)3]2+, a detection limit of 36 nM was observed.</description><subject>Absorption</subject><subject>Ag/AgCl</subject><subject>Chemistry</subject><subject>Coated electrodes</subject><subject>Diffusion coefficient</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Fluorescence</subject><subject>Indium tin oxides</subject><subject>Iron</subject><subject>Modulation</subject><subject>optically transparent thin layer electrode</subject><subject>Optics</subject><subject>Platinum</subject><subject>Potassium chloride</subject><subject>reference electrode</subject><subject>Ruthenium</subject><subject>Scanning electron microscopy</subject><subject>Solid state</subject><subject>Spectroelectrochemistry</subject><subject>Spectroscopy</subject><subject>Thin films</subject><subject>Tin</subject><subject>X-ray spectroscopy</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLxDAUhYMoOj7-gUjRjZuON2mTtksZfIEg4rgOaXrrRNq0Jp3F_HtTOyq4cHUh9zvnHnIIOaUwp8DoldJ-rqxq9ArbeVYCMJ7vkBnlDGKR52yXzAAgiVkGcEAOvX8HoBSo2CcHLBfAeU5n5PmpH4xWTbOJlk5Z3yuHdoiWK2PjW9O00U2DenBdhdFiZfqo7lz00n894bQZ748O0Qtab-zbMdmrVePxZDuPyOvtzXJxHz8-3T0srh9jxUEMMRchTZYoUWJJdZZmpWaK1XlSVJAwrOokZOU5FFQlIoeqpoiapxlPuapYrZIjcj75dn4w0mszoF7pztqQStIkS0UKAbqcoN51H2v0g2yN19g0ymK39pIWUDAQkLGAXvxB37u1Cx88UikUAlLggUonSrvOe4e17J1pldtICnLsRYZe5HcvcttLkJ1tzddli9WP6LuIAMAEjPLfw_95fgIct5tB</recordid><startdate>20170718</startdate><enddate>20170718</enddate><creator>Branch, Shirmir D</creator><creator>Lines, Amanda M</creator><creator>Lynch, John</creator><creator>Bello, Job M</creator><creator>Heineman, William R</creator><creator>Bryan, Samuel A</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8826-0880</orcidid><orcidid>https://orcid.org/0000-0003-2428-5445</orcidid><orcidid>https://orcid.org/0000000324285445</orcidid><orcidid>https://orcid.org/0000000288260880</orcidid></search><sort><creationdate>20170718</creationdate><title>Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing</title><author>Branch, Shirmir D ; Lines, Amanda M ; Lynch, John ; Bello, Job M ; Heineman, William R ; Bryan, Samuel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a506t-5601173a6beb1c747bc2a2f839d032edf310158091a3680df1eec547545ad2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>Ag/AgCl</topic><topic>Chemistry</topic><topic>Coated electrodes</topic><topic>Diffusion coefficient</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Fluorescence</topic><topic>Indium tin oxides</topic><topic>Iron</topic><topic>Modulation</topic><topic>optically transparent thin layer electrode</topic><topic>Optics</topic><topic>Platinum</topic><topic>Potassium chloride</topic><topic>reference electrode</topic><topic>Ruthenium</topic><topic>Scanning electron microscopy</topic><topic>Solid state</topic><topic>Spectroelectrochemistry</topic><topic>Spectroscopy</topic><topic>Thin films</topic><topic>Tin</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Branch, Shirmir D</creatorcontrib><creatorcontrib>Lines, Amanda M</creatorcontrib><creatorcontrib>Lynch, John</creatorcontrib><creatorcontrib>Bello, Job M</creatorcontrib><creatorcontrib>Heineman, William R</creatorcontrib><creatorcontrib>Bryan, Samuel A</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Branch, Shirmir D</au><au>Lines, Amanda M</au><au>Lynch, John</au><au>Bello, Job M</au><au>Heineman, William R</au><au>Bryan, Samuel A</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-07-18</date><risdate>2017</risdate><volume>89</volume><issue>14</issue><spage>7324</spage><epage>7332</epage><pages>7324-7332</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>A novel microfabricated optically transparent thin-film electrode chip for fluorescence and absorption spectroelectrochemistry has been developed. The working electrode was composed of indium tin oxide (ITO); the quasi-reference and auxiliary electrodes were composed of platinum. The stability of the platinum quasi-reference electrode was improved by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference was characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry measurements showed that the electrode chip was comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe­(CN)6] in 0.1 M KCl using the electrode chip gave a diffusion coefficient of 1.59 × 10–6 cm2/s, in comparison to the value of 2.38 × 10–6 cm2/s using a standard electrochemical cell. By using the electrode chip in an optically transparent thin-layer electrode (OTTLE), the absorption based spectroelectrochemical modulation of [Fe­(CN)6]3–/4– was demonstrated, as well as the fluorescence based modulation of [Ru­(bpy)3]2+/3+. For the fluorescence spectroelectrochemical determination of [Ru­(bpy)3]2+, a detection limit of 36 nM was observed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28605581</pmid><doi>10.1021/acs.analchem.7b00258</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8826-0880</orcidid><orcidid>https://orcid.org/0000-0003-2428-5445</orcidid><orcidid>https://orcid.org/0000000324285445</orcidid><orcidid>https://orcid.org/0000000288260880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-07, Vol.89 (14), p.7324-7332
issn 0003-2700
1520-6882
language eng
recordid cdi_osti_scitechconnect_1374640
source American Chemical Society Journals
subjects Absorption
Ag/AgCl
Chemistry
Coated electrodes
Diffusion coefficient
Electrochemistry
Electrodes
Electron microscopy
Fluorescence
Indium tin oxides
Iron
Modulation
optically transparent thin layer electrode
Optics
Platinum
Potassium chloride
reference electrode
Ruthenium
Scanning electron microscopy
Solid state
Spectroelectrochemistry
Spectroscopy
Thin films
Tin
X-ray spectroscopy
title Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optically%20Transparent%20Thin-Film%20Electrode%20Chip%20for%20Spectroelectrochemical%20Sensing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Branch,%20Shirmir%20D&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2017-07-18&rft.volume=89&rft.issue=14&rft.spage=7324&rft.epage=7332&rft.pages=7324-7332&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b00258&rft_dat=%3Cproquest_osti_%3E1940960405%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940960405&rft_id=info:pmid/28605581&rfr_iscdi=true