Time‐Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals

The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-06, Vol.29 (24), p.n/a
Hauptverfasser: Reyes‐Martinez, Marcos A., Abdelhady, Ahmed L., Saidaminov, Makhsud I., Chung, Duck Young, Bakr, Osman M., Kanatzidis, Mercouri G., Soboyejo, Wole O., Loo, Yueh‐Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 24
container_start_page
container_title Advanced materials (Weinheim)
container_volume 29
creator Reyes‐Martinez, Marcos A.
Abdelhady, Ahmed L.
Saidaminov, Makhsud I.
Chung, Duck Young
Bakr, Osman M.
Kanatzidis, Mercouri G.
Soboyejo, Wole O.
Loo, Yueh‐Lin
description The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time‐ and rate‐dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop‐in events and slip bands on the surface of the indented crystals demonstrate dislocation‐mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A‐site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations. Dynamic mechanical response of hybrid organic–inorganic and inorganic perovskite crystals suggests that the time‐dependent mechanical properties of lead–halide perovskites are independent of the chemical character of the A‐site cation. Moreover, significant viscoplastic behavior is revealed through creep and stress‐relaxation measurements. These phenomena are interpreted as direct results of the crystal structures and how dislocations propagate within them.
doi_str_mv 10.1002/adma.201606556
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1374182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920412329</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2936-70f3ee311eb34a9af527db9b0fb1a620f0895bc31015c95f2560d9348fe188f3</originalsourceid><addsrcrecordid>eNpdkcFO20AURUeoSE0D265HdEOlGN6b8dgeVV0Y0xKkBKqSBaxGY-dNa-SMg8dRlV0_gW_kSzAKYsHq6kpHT_fpMPYZ4QQBxKldruyJAEwgUSrZYyNUAqMYtPrARqClinQSZx_ZpxDuAUAP3IjdLeoVPf1_PKc1-SX5ns-p-mt9XdmG_6awbn0g3jqe_ypvJT_O-XdehAkvpvJqKr_x26FfTvhZ95Xf1P5PQ7zotqG3TThg-24IOnzNMVv8_LEoptHs-uKyyGdRK7RMohScJJKIVMrYauuUSJelLsGVaBMBDjKtykoioKq0ckIlsNQyzhxhljk5Zke7s23oaxOquh_2V633VPUGZRpjJgboeAetu_ZhQ6E3qzpU1DTWU7sJBjMda8xkmg7ol3fofbvp_PCBQS0gRiGH3WOmd9S_uqGtWXf1ynZbg2BeVJgXFeZNhcnP5_lbk89lYXpj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920412329</pqid></control><display><type>article</type><title>Time‐Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals</title><source>Access via Wiley Online Library</source><creator>Reyes‐Martinez, Marcos A. ; Abdelhady, Ahmed L. ; Saidaminov, Makhsud I. ; Chung, Duck Young ; Bakr, Osman M. ; Kanatzidis, Mercouri G. ; Soboyejo, Wole O. ; Loo, Yueh‐Lin</creator><creatorcontrib>Reyes‐Martinez, Marcos A. ; Abdelhady, Ahmed L. ; Saidaminov, Makhsud I. ; Chung, Duck Young ; Bakr, Osman M. ; Kanatzidis, Mercouri G. ; Soboyejo, Wole O. ; Loo, Yueh‐Lin ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time‐ and rate‐dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop‐in events and slip bands on the surface of the indented crystals demonstrate dislocation‐mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A‐site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations. Dynamic mechanical response of hybrid organic–inorganic and inorganic perovskite crystals suggests that the time‐dependent mechanical properties of lead–halide perovskites are independent of the chemical character of the A‐site cation. Moreover, significant viscoplastic behavior is revealed through creep and stress‐relaxation measurements. These phenomena are interpreted as direct results of the crystal structures and how dislocations propagate within them.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201606556</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloys ; Creep (materials) ; Crystal structure ; Devices ; dynamic mechanical behavior ; Edge dislocations ; Formability ; hybrid perovskites ; Indentation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; Mechanical analysis ; Mechanical properties ; Nanoindentation ; Nucleation ; Photovoltaic cells ; Plastic deformation ; Propagation ; Sensors ; Single crystals ; Solar cells ; Strain ; Stress relaxation ; Time dependence ; viscoplasticity</subject><ispartof>Advanced materials (Weinheim), 2017-06, Vol.29 (24), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4284-0847 ; 0000000242840847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201606556$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201606556$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1374182$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyes‐Martinez, Marcos A.</creatorcontrib><creatorcontrib>Abdelhady, Ahmed L.</creatorcontrib><creatorcontrib>Saidaminov, Makhsud I.</creatorcontrib><creatorcontrib>Chung, Duck Young</creatorcontrib><creatorcontrib>Bakr, Osman M.</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Soboyejo, Wole O.</creatorcontrib><creatorcontrib>Loo, Yueh‐Lin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Time‐Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals</title><title>Advanced materials (Weinheim)</title><description>The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time‐ and rate‐dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop‐in events and slip bands on the surface of the indented crystals demonstrate dislocation‐mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A‐site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations. Dynamic mechanical response of hybrid organic–inorganic and inorganic perovskite crystals suggests that the time‐dependent mechanical properties of lead–halide perovskites are independent of the chemical character of the A‐site cation. Moreover, significant viscoplastic behavior is revealed through creep and stress‐relaxation measurements. These phenomena are interpreted as direct results of the crystal structures and how dislocations propagate within them.</description><subject>Alloys</subject><subject>Creep (materials)</subject><subject>Crystal structure</subject><subject>Devices</subject><subject>dynamic mechanical behavior</subject><subject>Edge dislocations</subject><subject>Formability</subject><subject>hybrid perovskites</subject><subject>Indentation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Nanoindentation</subject><subject>Nucleation</subject><subject>Photovoltaic cells</subject><subject>Plastic deformation</subject><subject>Propagation</subject><subject>Sensors</subject><subject>Single crystals</subject><subject>Solar cells</subject><subject>Strain</subject><subject>Stress relaxation</subject><subject>Time dependence</subject><subject>viscoplasticity</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkcFO20AURUeoSE0D265HdEOlGN6b8dgeVV0Y0xKkBKqSBaxGY-dNa-SMg8dRlV0_gW_kSzAKYsHq6kpHT_fpMPYZ4QQBxKldruyJAEwgUSrZYyNUAqMYtPrARqClinQSZx_ZpxDuAUAP3IjdLeoVPf1_PKc1-SX5ns-p-mt9XdmG_6awbn0g3jqe_ypvJT_O-XdehAkvpvJqKr_x26FfTvhZ95Xf1P5PQ7zotqG3TThg-24IOnzNMVv8_LEoptHs-uKyyGdRK7RMohScJJKIVMrYauuUSJelLsGVaBMBDjKtykoioKq0ckIlsNQyzhxhljk5Zke7s23oaxOquh_2V633VPUGZRpjJgboeAetu_ZhQ6E3qzpU1DTWU7sJBjMda8xkmg7ol3fofbvp_PCBQS0gRiGH3WOmd9S_uqGtWXf1ynZbg2BeVJgXFeZNhcnP5_lbk89lYXpj</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Reyes‐Martinez, Marcos A.</creator><creator>Abdelhady, Ahmed L.</creator><creator>Saidaminov, Makhsud I.</creator><creator>Chung, Duck Young</creator><creator>Bakr, Osman M.</creator><creator>Kanatzidis, Mercouri G.</creator><creator>Soboyejo, Wole O.</creator><creator>Loo, Yueh‐Lin</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4284-0847</orcidid><orcidid>https://orcid.org/0000000242840847</orcidid></search><sort><creationdate>20170627</creationdate><title>Time‐Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals</title><author>Reyes‐Martinez, Marcos A. ; Abdelhady, Ahmed L. ; Saidaminov, Makhsud I. ; Chung, Duck Young ; Bakr, Osman M. ; Kanatzidis, Mercouri G. ; Soboyejo, Wole O. ; Loo, Yueh‐Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2936-70f3ee311eb34a9af527db9b0fb1a620f0895bc31015c95f2560d9348fe188f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Creep (materials)</topic><topic>Crystal structure</topic><topic>Devices</topic><topic>dynamic mechanical behavior</topic><topic>Edge dislocations</topic><topic>Formability</topic><topic>hybrid perovskites</topic><topic>Indentation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Nanoindentation</topic><topic>Nucleation</topic><topic>Photovoltaic cells</topic><topic>Plastic deformation</topic><topic>Propagation</topic><topic>Sensors</topic><topic>Single crystals</topic><topic>Solar cells</topic><topic>Strain</topic><topic>Stress relaxation</topic><topic>Time dependence</topic><topic>viscoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes‐Martinez, Marcos A.</creatorcontrib><creatorcontrib>Abdelhady, Ahmed L.</creatorcontrib><creatorcontrib>Saidaminov, Makhsud I.</creatorcontrib><creatorcontrib>Chung, Duck Young</creatorcontrib><creatorcontrib>Bakr, Osman M.</creatorcontrib><creatorcontrib>Kanatzidis, Mercouri G.</creatorcontrib><creatorcontrib>Soboyejo, Wole O.</creatorcontrib><creatorcontrib>Loo, Yueh‐Lin</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes‐Martinez, Marcos A.</au><au>Abdelhady, Ahmed L.</au><au>Saidaminov, Makhsud I.</au><au>Chung, Duck Young</au><au>Bakr, Osman M.</au><au>Kanatzidis, Mercouri G.</au><au>Soboyejo, Wole O.</au><au>Loo, Yueh‐Lin</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time‐Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2017-06-27</date><risdate>2017</risdate><volume>29</volume><issue>24</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The ease of processing hybrid organic–inorganic perovskite (HOIPs) films, belonging to a material class with composition ABX3, from solution and at mild temperatures promises their use in deformable technologies, including flexible photovoltaic devices, sensors, and displays. To successfully apply these materials in deformable devices, knowledge of their mechanical response to dynamic strain is necessary. The authors elucidate the time‐ and rate‐dependent mechanical properties of HOIPs and an inorganic perovskite (IP) single crystal by measuring nanoindentation creep and stress relaxation. The observation of pop‐in events and slip bands on the surface of the indented crystals demonstrate dislocation‐mediated plastic deformation. The magnitudes of creep and relaxation of both HOIPs and IPs are similar, negating prior hypothesis that the presence of organic A‐site cations alters the mechanical response of these materials. Moreover, these samples exhibit a pronounced increase in creep, and stress relaxation as a function of indentation rate whose magnitudes reflect differences in the rates of nucleation and propagation of dislocations within the crystal structures of HOIPs and IP. This contribution provides understanding that is critical for designing perovskite devices capable of withstanding mechanical deformations. Dynamic mechanical response of hybrid organic–inorganic and inorganic perovskite crystals suggests that the time‐dependent mechanical properties of lead–halide perovskites are independent of the chemical character of the A‐site cation. Moreover, significant viscoplastic behavior is revealed through creep and stress‐relaxation measurements. These phenomena are interpreted as direct results of the crystal structures and how dislocations propagate within them.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201606556</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4284-0847</orcidid><orcidid>https://orcid.org/0000000242840847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-06, Vol.29 (24), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1374182
source Access via Wiley Online Library
subjects Alloys
Creep (materials)
Crystal structure
Devices
dynamic mechanical behavior
Edge dislocations
Formability
hybrid perovskites
Indentation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
Mechanical analysis
Mechanical properties
Nanoindentation
Nucleation
Photovoltaic cells
Plastic deformation
Propagation
Sensors
Single crystals
Solar cells
Strain
Stress relaxation
Time dependence
viscoplasticity
title Time‐Dependent Mechanical Response of APbX3 (A = Cs, CH3NH3; X = I, Br) Single Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%E2%80%90Dependent%20Mechanical%20Response%20of%20APbX3%20(A%20=%20Cs,%20CH3NH3;%20X%20=%20I,%20Br)%20Single%20Crystals&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Reyes%E2%80%90Martinez,%20Marcos%20A.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-06-27&rft.volume=29&rft.issue=24&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201606556&rft_dat=%3Cproquest_osti_%3E1920412329%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920412329&rft_id=info:pmid/&rfr_iscdi=true