Structure and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites

The incorporation of SiOC polymer‐derived ceramics into porous carbon materials could provide tailored shapeable, mechanical, electrical, and oxidation‐resistant properties for high‐temperature applications. Understanding the thermodynamic and kinetic stability of such materials is crucial for their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2017-08, Vol.100 (8), p.3693-3702
Hauptverfasser: Niu, Min, Wang, Hongjie, Chen, Jiewei, Su, Lei, Wu, Di, Navrotsky, Alexandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3702
container_issue 8
container_start_page 3693
container_title Journal of the American Ceramic Society
container_volume 100
creator Niu, Min
Wang, Hongjie
Chen, Jiewei
Su, Lei
Wu, Di
Navrotsky, Alexandra
description The incorporation of SiOC polymer‐derived ceramics into porous carbon materials could provide tailored shapeable, mechanical, electrical, and oxidation‐resistant properties for high‐temperature applications. Understanding the thermodynamic and kinetic stability of such materials is crucial for their practical application. We report here the dependence of structures and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites (CBCFs) on the pyrolysis temperature using spectroscopic methods and high‐temperature oxide melt solution calorimetry. The results indicate that a SiOC ceramic pyrolyzed at 1200°C and 1600°C is energetically stable with respect to an isocompositional mixture of cristobalite, silicon carbide, and graphite by 4.9 and 10.3 kJ/mol, respectively, and more energetically stable than that pyrolyzed at 1450°C. Their thermodynamic stability is related to their structural evolution. SiOC‐modified CBCFs become energetically less stable with increasing preparation temperature and concomitant increase in excess carbon content.
doi_str_mv 10.1111/jace.14830
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1373825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925509563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3280-4315ff178ba2c6cb9891ddfa93cfcfa681c0aab2e08812d4b8e532d3655d4a073</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbn2DQnTA1J5nMZJal1BtCF9WdEDK5aEo7qckU6c5H8Bl9EtOOuPQszo3vXPgROgc8gmTXC6nMCApO8QEaAGOQkxrKQzTAGJO84gQfo5MYF6mEmhcD9DLvwkZ1m2Ay2erMtCa8ms6pmHmbzd1ssm_vku_Pr5XXzjqjMyVD49vUSV7_1Zl1jQmZ8qu1j64z8RQdWbmM5uw3DtHzzfRpcpc_zm7vJ-PHXFHCcV5QYNZCxRtJVKmamtegtZU1VVZZWXJQWMqGGMw5EF003DBKNC0Z04XEFR2ii36vj50TUaXb6k35tjWqE0AryglL0GUPrYN_35jYiYXfhDb9JaAmjOGalTRRVz2lgo8xGCvWwa1k2ArAYiex2Eks9hInGHr4wy3N9h9SPIwn037mB-1hf40</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925509563</pqid></control><display><type>article</type><title>Structure and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites</title><source>Wiley Online Library All Journals</source><creator>Niu, Min ; Wang, Hongjie ; Chen, Jiewei ; Su, Lei ; Wu, Di ; Navrotsky, Alexandra</creator><creatorcontrib>Niu, Min ; Wang, Hongjie ; Chen, Jiewei ; Su, Lei ; Wu, Di ; Navrotsky, Alexandra</creatorcontrib><description>The incorporation of SiOC polymer‐derived ceramics into porous carbon materials could provide tailored shapeable, mechanical, electrical, and oxidation‐resistant properties for high‐temperature applications. Understanding the thermodynamic and kinetic stability of such materials is crucial for their practical application. We report here the dependence of structures and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites (CBCFs) on the pyrolysis temperature using spectroscopic methods and high‐temperature oxide melt solution calorimetry. The results indicate that a SiOC ceramic pyrolyzed at 1200°C and 1600°C is energetically stable with respect to an isocompositional mixture of cristobalite, silicon carbide, and graphite by 4.9 and 10.3 kJ/mol, respectively, and more energetically stable than that pyrolyzed at 1450°C. Their thermodynamic stability is related to their structural evolution. SiOC‐modified CBCFs become energetically less stable with increasing preparation temperature and concomitant increase in excess carbon content.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14830</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Carbon content ; Carbon fiber reinforced plastics ; Carbon fibers ; Ceramic bonding ; Ceramic fibers ; Ceramics ; Composite materials ; Cristobalite ; Electrical resistance ; Fiber composites ; Heat measurement ; Oxidation resistance ; Porous materials ; Pyrolysis ; Silicon carbide ; silicon oxycarbide ; structure ; thermodynamics</subject><ispartof>Journal of the American Ceramic Society, 2017-08, Vol.100 (8), p.3693-3702</ispartof><rights>2017 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3280-4315ff178ba2c6cb9891ddfa93cfcfa681c0aab2e08812d4b8e532d3655d4a073</citedby><cites>FETCH-LOGICAL-c3280-4315ff178ba2c6cb9891ddfa93cfcfa681c0aab2e08812d4b8e532d3655d4a073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14830$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14830$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1373825$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Min</creatorcontrib><creatorcontrib>Wang, Hongjie</creatorcontrib><creatorcontrib>Chen, Jiewei</creatorcontrib><creatorcontrib>Su, Lei</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><title>Structure and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites</title><title>Journal of the American Ceramic Society</title><description>The incorporation of SiOC polymer‐derived ceramics into porous carbon materials could provide tailored shapeable, mechanical, electrical, and oxidation‐resistant properties for high‐temperature applications. Understanding the thermodynamic and kinetic stability of such materials is crucial for their practical application. We report here the dependence of structures and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites (CBCFs) on the pyrolysis temperature using spectroscopic methods and high‐temperature oxide melt solution calorimetry. The results indicate that a SiOC ceramic pyrolyzed at 1200°C and 1600°C is energetically stable with respect to an isocompositional mixture of cristobalite, silicon carbide, and graphite by 4.9 and 10.3 kJ/mol, respectively, and more energetically stable than that pyrolyzed at 1450°C. Their thermodynamic stability is related to their structural evolution. SiOC‐modified CBCFs become energetically less stable with increasing preparation temperature and concomitant increase in excess carbon content.</description><subject>Carbon content</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Ceramic bonding</subject><subject>Ceramic fibers</subject><subject>Ceramics</subject><subject>Composite materials</subject><subject>Cristobalite</subject><subject>Electrical resistance</subject><subject>Fiber composites</subject><subject>Heat measurement</subject><subject>Oxidation resistance</subject><subject>Porous materials</subject><subject>Pyrolysis</subject><subject>Silicon carbide</subject><subject>silicon oxycarbide</subject><subject>structure</subject><subject>thermodynamics</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbn2DQnTA1J5nMZJal1BtCF9WdEDK5aEo7qckU6c5H8Bl9EtOOuPQszo3vXPgROgc8gmTXC6nMCApO8QEaAGOQkxrKQzTAGJO84gQfo5MYF6mEmhcD9DLvwkZ1m2Ay2erMtCa8ms6pmHmbzd1ssm_vku_Pr5XXzjqjMyVD49vUSV7_1Zl1jQmZ8qu1j64z8RQdWbmM5uw3DtHzzfRpcpc_zm7vJ-PHXFHCcV5QYNZCxRtJVKmamtegtZU1VVZZWXJQWMqGGMw5EF003DBKNC0Z04XEFR2ii36vj50TUaXb6k35tjWqE0AryglL0GUPrYN_35jYiYXfhDb9JaAmjOGalTRRVz2lgo8xGCvWwa1k2ArAYiex2Eks9hInGHr4wy3N9h9SPIwn037mB-1hf40</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Niu, Min</creator><creator>Wang, Hongjie</creator><creator>Chen, Jiewei</creator><creator>Su, Lei</creator><creator>Wu, Di</creator><creator>Navrotsky, Alexandra</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>201708</creationdate><title>Structure and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites</title><author>Niu, Min ; Wang, Hongjie ; Chen, Jiewei ; Su, Lei ; Wu, Di ; Navrotsky, Alexandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3280-4315ff178ba2c6cb9891ddfa93cfcfa681c0aab2e08812d4b8e532d3655d4a073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon content</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Ceramic bonding</topic><topic>Ceramic fibers</topic><topic>Ceramics</topic><topic>Composite materials</topic><topic>Cristobalite</topic><topic>Electrical resistance</topic><topic>Fiber composites</topic><topic>Heat measurement</topic><topic>Oxidation resistance</topic><topic>Porous materials</topic><topic>Pyrolysis</topic><topic>Silicon carbide</topic><topic>silicon oxycarbide</topic><topic>structure</topic><topic>thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Min</creatorcontrib><creatorcontrib>Wang, Hongjie</creatorcontrib><creatorcontrib>Chen, Jiewei</creatorcontrib><creatorcontrib>Su, Lei</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Min</au><au>Wang, Hongjie</au><au>Chen, Jiewei</au><au>Su, Lei</au><au>Wu, Di</au><au>Navrotsky, Alexandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-08</date><risdate>2017</risdate><volume>100</volume><issue>8</issue><spage>3693</spage><epage>3702</epage><pages>3693-3702</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The incorporation of SiOC polymer‐derived ceramics into porous carbon materials could provide tailored shapeable, mechanical, electrical, and oxidation‐resistant properties for high‐temperature applications. Understanding the thermodynamic and kinetic stability of such materials is crucial for their practical application. We report here the dependence of structures and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites (CBCFs) on the pyrolysis temperature using spectroscopic methods and high‐temperature oxide melt solution calorimetry. The results indicate that a SiOC ceramic pyrolyzed at 1200°C and 1600°C is energetically stable with respect to an isocompositional mixture of cristobalite, silicon carbide, and graphite by 4.9 and 10.3 kJ/mol, respectively, and more energetically stable than that pyrolyzed at 1450°C. Their thermodynamic stability is related to their structural evolution. SiOC‐modified CBCFs become energetically less stable with increasing preparation temperature and concomitant increase in excess carbon content.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.14830</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2017-08, Vol.100 (8), p.3693-3702
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_1373825
source Wiley Online Library All Journals
subjects Carbon content
Carbon fiber reinforced plastics
Carbon fibers
Ceramic bonding
Ceramic fibers
Ceramics
Composite materials
Cristobalite
Electrical resistance
Fiber composites
Heat measurement
Oxidation resistance
Porous materials
Pyrolysis
Silicon carbide
silicon oxycarbide
structure
thermodynamics
title Structure and energetics of SiOC and SiOC‐modified carbon‐bonded carbon fiber composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20energetics%20of%20SiOC%20and%20SiOC%E2%80%90modified%20carbon%E2%80%90bonded%20carbon%20fiber%20composites&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Niu,%20Min&rft.date=2017-08&rft.volume=100&rft.issue=8&rft.spage=3693&rft.epage=3702&rft.pages=3693-3702&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.14830&rft_dat=%3Cproquest_osti_%3E1925509563%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925509563&rft_id=info:pmid/&rfr_iscdi=true