Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets

A direct synthesis of high-aspect-ratio microporous zeolite nanosheets and the use of such nanosheets in separation membranes are described. Ultra-slim zeolite membranes Zeolites—naturally occurring porous crystalline aluminosilicates that are also produced industrially on a large scale—are used com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2017-03, Vol.543 (7647), p.690-694
Hauptverfasser: Jeon, Mi Young, Kim, Donghun, Kumar, Prashant, Lee, Pyung Soo, Rangnekar, Neel, Bai, Peng, Shete, Meera, Elyassi, Bahman, Lee, Han Seung, Narasimharao, Katabathini, Basahel, Sulaiman Nasir, Al-Thabaiti, Shaeel, Xu, Wenqian, Cho, Hong Je, Fetisov, Evgenii O., Thyagarajan, Raghuram, DeJaco, Robert F., Fan, Wei, Mkhoyan, K. Andre, Siepmann, J. Ilja, Tsapatsis, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 694
container_issue 7647
container_start_page 690
container_title Nature (London)
container_volume 543
creator Jeon, Mi Young
Kim, Donghun
Kumar, Prashant
Lee, Pyung Soo
Rangnekar, Neel
Bai, Peng
Shete, Meera
Elyassi, Bahman
Lee, Han Seung
Narasimharao, Katabathini
Basahel, Sulaiman Nasir
Al-Thabaiti, Shaeel
Xu, Wenqian
Cho, Hong Je
Fetisov, Evgenii O.
Thyagarajan, Raghuram
DeJaco, Robert F.
Fan, Wei
Mkhoyan, K. Andre
Siepmann, J. Ilja
Tsapatsis, Michael
description A direct synthesis of high-aspect-ratio microporous zeolite nanosheets and the use of such nanosheets in separation membranes are described. Ultra-slim zeolite membranes Zeolites—naturally occurring porous crystalline aluminosilicates that are also produced industrially on a large scale—are used commercially as selective adsorbents. Zeolite membranes can be used for selective dehydration, but more general separations, for example of hydrocarbon isomers, are challenging because they require thin membranes with highly oriented pores. At present, such thin membranes are produced by an expensive and low-yielding exfoliation process. Here the authors produce nanometre-thick zeolite nanosheets using a bottom-up seeded growth method that retains the pore structure and avoids rotational intergrowths. Using xylene isomer separation as a benchmark, the authors found that their compact membranes had higher selectivities and flux rates than previous zeolite membranes. A zeolite with structure type MFI 1 , 2 is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5–0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents 3 , 4 , 5 . As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape 5 , 6 , 7 , 8 . Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared 9 and self-pillared (intergrown) 10 architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications 11 , 12 , 13 , 14 . Moreover, single (non-intergrown and non-layered) nanosheets have been used to prepare thin membranes 15 , 16 that could be used to improve the energy efficiency of separation processes 17 . However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI 9 , 15 , followed by centrifugation to remove non-exfoliated particles 18 . This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single
doi_str_mv 10.1038/nature21421
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1373573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A504499559</galeid><sourcerecordid>A504499559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c686t-6831924926de0fec2cad673d7628aaaa1df1e217db29e57312a158004ba828923</originalsourceid><addsrcrecordid>eNp10s9v0zAUB3ALgVgZnLijaFxAkGE7Tuwcq4ofkyZAsImj5ToviafE7mwHrfvr8dQxtSjEh0j2x1_5PT2EXhJ8SnAhPlgVJw-UMEoeoQVhvMpZJfhjtMCYihyLojpCz0K4whiXhLOn6IgKWnOOxQJ9vxyiV3mAAXQ0vyHrTdfn7TDdZCOMa68shKz1bswa4xMZtlnY2thDMLfQZLfgBhMhs8q60APE8Bw9adUQ4MX9_xhdfvp4sfqSn3_7fLZanue6ElXMK1GQmrKaVg3gFjTVqql40fCKCpU-0rQk1cSbNa2h5AWhipQCY7ZWgoqaFsfoZJfrQjQy6PQK3WtnbXqkJAUv0qWE3uzQxrvrCUKUowkahiGV5aYgieCC8JpVJNHX_9ArN3mbSkhKMC5EmUIfVKcGkMa2LnVP34XKZYkZq-uyrJPKZ1QHFrwanIXWpO0DfzLj9cZcy310OoPSamA0ejb17cGFZCLcxE5NIciznz8O7bv_2-XFr9XXWa29C8FDKzfejMpvJcHybibl3kwm_eq-s9N6hObB_h3CBN7vQEhHtgO_1_qZvD8WbecK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884788537</pqid></control><display><type>article</type><title>Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Jeon, Mi Young ; Kim, Donghun ; Kumar, Prashant ; Lee, Pyung Soo ; Rangnekar, Neel ; Bai, Peng ; Shete, Meera ; Elyassi, Bahman ; Lee, Han Seung ; Narasimharao, Katabathini ; Basahel, Sulaiman Nasir ; Al-Thabaiti, Shaeel ; Xu, Wenqian ; Cho, Hong Je ; Fetisov, Evgenii O. ; Thyagarajan, Raghuram ; DeJaco, Robert F. ; Fan, Wei ; Mkhoyan, K. Andre ; Siepmann, J. Ilja ; Tsapatsis, Michael</creator><creatorcontrib>Jeon, Mi Young ; Kim, Donghun ; Kumar, Prashant ; Lee, Pyung Soo ; Rangnekar, Neel ; Bai, Peng ; Shete, Meera ; Elyassi, Bahman ; Lee, Han Seung ; Narasimharao, Katabathini ; Basahel, Sulaiman Nasir ; Al-Thabaiti, Shaeel ; Xu, Wenqian ; Cho, Hong Je ; Fetisov, Evgenii O. ; Thyagarajan, Raghuram ; DeJaco, Robert F. ; Fan, Wei ; Mkhoyan, K. Andre ; Siepmann, J. Ilja ; Tsapatsis, Michael ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>A direct synthesis of high-aspect-ratio microporous zeolite nanosheets and the use of such nanosheets in separation membranes are described. Ultra-slim zeolite membranes Zeolites—naturally occurring porous crystalline aluminosilicates that are also produced industrially on a large scale—are used commercially as selective adsorbents. Zeolite membranes can be used for selective dehydration, but more general separations, for example of hydrocarbon isomers, are challenging because they require thin membranes with highly oriented pores. At present, such thin membranes are produced by an expensive and low-yielding exfoliation process. Here the authors produce nanometre-thick zeolite nanosheets using a bottom-up seeded growth method that retains the pore structure and avoids rotational intergrowths. Using xylene isomer separation as a benchmark, the authors found that their compact membranes had higher selectivities and flux rates than previous zeolite membranes. A zeolite with structure type MFI 1 , 2 is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5–0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents 3 , 4 , 5 . As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape 5 , 6 , 7 , 8 . Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared 9 and self-pillared (intergrown) 10 architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications 11 , 12 , 13 , 14 . Moreover, single (non-intergrown and non-layered) nanosheets have been used to prepare thin membranes 15 , 16 that could be used to improve the energy efficiency of separation processes 17 . However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI 9 , 15 , followed by centrifugation to remove non-exfoliated particles 18 . This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. These coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature21421</identifier><identifier>PMID: 28297708</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/1013 ; 639/301/357/1018 ; 639/925/357/551 ; Biosynthesis ; Catalysis ; Centrifugation ; Chemical industry ; Crystals ; Energy efficiency ; Fabrication ; Humanities and Social Sciences ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; letter ; Materials research ; MATERIALS SCIENCE ; Membranes ; Membranes (Biology) ; Morphology ; multidisciplinary ; Nanoparticles ; Science ; Seeds ; Separation processes ; Transmission electron microscopy ; Zeolites</subject><ispartof>Nature (London), 2017-03, Vol.543 (7647), p.690-694</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 30, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c686t-6831924926de0fec2cad673d7628aaaa1df1e217db29e57312a158004ba828923</citedby><cites>FETCH-LOGICAL-c686t-6831924926de0fec2cad673d7628aaaa1df1e217db29e57312a158004ba828923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature21421$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature21421$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28297708$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1373573$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Mi Young</creatorcontrib><creatorcontrib>Kim, Donghun</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Lee, Pyung Soo</creatorcontrib><creatorcontrib>Rangnekar, Neel</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Shete, Meera</creatorcontrib><creatorcontrib>Elyassi, Bahman</creatorcontrib><creatorcontrib>Lee, Han Seung</creatorcontrib><creatorcontrib>Narasimharao, Katabathini</creatorcontrib><creatorcontrib>Basahel, Sulaiman Nasir</creatorcontrib><creatorcontrib>Al-Thabaiti, Shaeel</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Cho, Hong Je</creatorcontrib><creatorcontrib>Fetisov, Evgenii O.</creatorcontrib><creatorcontrib>Thyagarajan, Raghuram</creatorcontrib><creatorcontrib>DeJaco, Robert F.</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Mkhoyan, K. Andre</creatorcontrib><creatorcontrib>Siepmann, J. Ilja</creatorcontrib><creatorcontrib>Tsapatsis, Michael</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A direct synthesis of high-aspect-ratio microporous zeolite nanosheets and the use of such nanosheets in separation membranes are described. Ultra-slim zeolite membranes Zeolites—naturally occurring porous crystalline aluminosilicates that are also produced industrially on a large scale—are used commercially as selective adsorbents. Zeolite membranes can be used for selective dehydration, but more general separations, for example of hydrocarbon isomers, are challenging because they require thin membranes with highly oriented pores. At present, such thin membranes are produced by an expensive and low-yielding exfoliation process. Here the authors produce nanometre-thick zeolite nanosheets using a bottom-up seeded growth method that retains the pore structure and avoids rotational intergrowths. Using xylene isomer separation as a benchmark, the authors found that their compact membranes had higher selectivities and flux rates than previous zeolite membranes. A zeolite with structure type MFI 1 , 2 is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5–0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents 3 , 4 , 5 . As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape 5 , 6 , 7 , 8 . Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared 9 and self-pillared (intergrown) 10 architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications 11 , 12 , 13 , 14 . Moreover, single (non-intergrown and non-layered) nanosheets have been used to prepare thin membranes 15 , 16 that could be used to improve the energy efficiency of separation processes 17 . However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI 9 , 15 , followed by centrifugation to remove non-exfoliated particles 18 . This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. These coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).</description><subject>639/301/299/1013</subject><subject>639/301/357/1018</subject><subject>639/925/357/551</subject><subject>Biosynthesis</subject><subject>Catalysis</subject><subject>Centrifugation</subject><subject>Chemical industry</subject><subject>Crystals</subject><subject>Energy efficiency</subject><subject>Fabrication</subject><subject>Humanities and Social Sciences</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>letter</subject><subject>Materials research</subject><subject>MATERIALS SCIENCE</subject><subject>Membranes</subject><subject>Membranes (Biology)</subject><subject>Morphology</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Science</subject><subject>Seeds</subject><subject>Separation processes</subject><subject>Transmission electron microscopy</subject><subject>Zeolites</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s9v0zAUB3ALgVgZnLijaFxAkGE7Tuwcq4ofkyZAsImj5ToviafE7mwHrfvr8dQxtSjEh0j2x1_5PT2EXhJ8SnAhPlgVJw-UMEoeoQVhvMpZJfhjtMCYihyLojpCz0K4whiXhLOn6IgKWnOOxQJ9vxyiV3mAAXQ0vyHrTdfn7TDdZCOMa68shKz1bswa4xMZtlnY2thDMLfQZLfgBhMhs8q60APE8Bw9adUQ4MX9_xhdfvp4sfqSn3_7fLZanue6ElXMK1GQmrKaVg3gFjTVqql40fCKCpU-0rQk1cSbNa2h5AWhipQCY7ZWgoqaFsfoZJfrQjQy6PQK3WtnbXqkJAUv0qWE3uzQxrvrCUKUowkahiGV5aYgieCC8JpVJNHX_9ArN3mbSkhKMC5EmUIfVKcGkMa2LnVP34XKZYkZq-uyrJPKZ1QHFrwanIXWpO0DfzLj9cZcy310OoPSamA0ejb17cGFZCLcxE5NIciznz8O7bv_2-XFr9XXWa29C8FDKzfejMpvJcHybibl3kwm_eq-s9N6hObB_h3CBN7vQEhHtgO_1_qZvD8WbecK</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Jeon, Mi Young</creator><creator>Kim, Donghun</creator><creator>Kumar, Prashant</creator><creator>Lee, Pyung Soo</creator><creator>Rangnekar, Neel</creator><creator>Bai, Peng</creator><creator>Shete, Meera</creator><creator>Elyassi, Bahman</creator><creator>Lee, Han Seung</creator><creator>Narasimharao, Katabathini</creator><creator>Basahel, Sulaiman Nasir</creator><creator>Al-Thabaiti, Shaeel</creator><creator>Xu, Wenqian</creator><creator>Cho, Hong Je</creator><creator>Fetisov, Evgenii O.</creator><creator>Thyagarajan, Raghuram</creator><creator>DeJaco, Robert F.</creator><creator>Fan, Wei</creator><creator>Mkhoyan, K. Andre</creator><creator>Siepmann, J. Ilja</creator><creator>Tsapatsis, Michael</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170330</creationdate><title>Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets</title><author>Jeon, Mi Young ; Kim, Donghun ; Kumar, Prashant ; Lee, Pyung Soo ; Rangnekar, Neel ; Bai, Peng ; Shete, Meera ; Elyassi, Bahman ; Lee, Han Seung ; Narasimharao, Katabathini ; Basahel, Sulaiman Nasir ; Al-Thabaiti, Shaeel ; Xu, Wenqian ; Cho, Hong Je ; Fetisov, Evgenii O. ; Thyagarajan, Raghuram ; DeJaco, Robert F. ; Fan, Wei ; Mkhoyan, K. Andre ; Siepmann, J. Ilja ; Tsapatsis, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c686t-6831924926de0fec2cad673d7628aaaa1df1e217db29e57312a158004ba828923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/299/1013</topic><topic>639/301/357/1018</topic><topic>639/925/357/551</topic><topic>Biosynthesis</topic><topic>Catalysis</topic><topic>Centrifugation</topic><topic>Chemical industry</topic><topic>Crystals</topic><topic>Energy efficiency</topic><topic>Fabrication</topic><topic>Humanities and Social Sciences</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>letter</topic><topic>Materials research</topic><topic>MATERIALS SCIENCE</topic><topic>Membranes</topic><topic>Membranes (Biology)</topic><topic>Morphology</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Science</topic><topic>Seeds</topic><topic>Separation processes</topic><topic>Transmission electron microscopy</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Mi Young</creatorcontrib><creatorcontrib>Kim, Donghun</creatorcontrib><creatorcontrib>Kumar, Prashant</creatorcontrib><creatorcontrib>Lee, Pyung Soo</creatorcontrib><creatorcontrib>Rangnekar, Neel</creatorcontrib><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Shete, Meera</creatorcontrib><creatorcontrib>Elyassi, Bahman</creatorcontrib><creatorcontrib>Lee, Han Seung</creatorcontrib><creatorcontrib>Narasimharao, Katabathini</creatorcontrib><creatorcontrib>Basahel, Sulaiman Nasir</creatorcontrib><creatorcontrib>Al-Thabaiti, Shaeel</creatorcontrib><creatorcontrib>Xu, Wenqian</creatorcontrib><creatorcontrib>Cho, Hong Je</creatorcontrib><creatorcontrib>Fetisov, Evgenii O.</creatorcontrib><creatorcontrib>Thyagarajan, Raghuram</creatorcontrib><creatorcontrib>DeJaco, Robert F.</creatorcontrib><creatorcontrib>Fan, Wei</creatorcontrib><creatorcontrib>Mkhoyan, K. Andre</creatorcontrib><creatorcontrib>Siepmann, J. Ilja</creatorcontrib><creatorcontrib>Tsapatsis, Michael</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Mi Young</au><au>Kim, Donghun</au><au>Kumar, Prashant</au><au>Lee, Pyung Soo</au><au>Rangnekar, Neel</au><au>Bai, Peng</au><au>Shete, Meera</au><au>Elyassi, Bahman</au><au>Lee, Han Seung</au><au>Narasimharao, Katabathini</au><au>Basahel, Sulaiman Nasir</au><au>Al-Thabaiti, Shaeel</au><au>Xu, Wenqian</au><au>Cho, Hong Je</au><au>Fetisov, Evgenii O.</au><au>Thyagarajan, Raghuram</au><au>DeJaco, Robert F.</au><au>Fan, Wei</au><au>Mkhoyan, K. Andre</au><au>Siepmann, J. Ilja</au><au>Tsapatsis, Michael</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>543</volume><issue>7647</issue><spage>690</spage><epage>694</epage><pages>690-694</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>A direct synthesis of high-aspect-ratio microporous zeolite nanosheets and the use of such nanosheets in separation membranes are described. Ultra-slim zeolite membranes Zeolites—naturally occurring porous crystalline aluminosilicates that are also produced industrially on a large scale—are used commercially as selective adsorbents. Zeolite membranes can be used for selective dehydration, but more general separations, for example of hydrocarbon isomers, are challenging because they require thin membranes with highly oriented pores. At present, such thin membranes are produced by an expensive and low-yielding exfoliation process. Here the authors produce nanometre-thick zeolite nanosheets using a bottom-up seeded growth method that retains the pore structure and avoids rotational intergrowths. Using xylene isomer separation as a benchmark, the authors found that their compact membranes had higher selectivities and flux rates than previous zeolite membranes. A zeolite with structure type MFI 1 , 2 is an aluminosilicate or silicate material that has a three-dimensionally connected pore network, which enables molecular recognition in the size range 0.5–0.6 nm. These micropore dimensions are relevant for many valuable chemical intermediates, and therefore MFI-type zeolites are widely used in the chemical industry as selective catalysts or adsorbents 3 , 4 , 5 . As with all zeolites, strategies to tailor them for specific applications include controlling their crystal size and shape 5 , 6 , 7 , 8 . Nanometre-thick MFI crystals (nanosheets) have been introduced in pillared 9 and self-pillared (intergrown) 10 architectures, offering improved mass-transfer characteristics for certain adsorption and catalysis applications 11 , 12 , 13 , 14 . Moreover, single (non-intergrown and non-layered) nanosheets have been used to prepare thin membranes 15 , 16 that could be used to improve the energy efficiency of separation processes 17 . However, until now, single MFI nanosheets have been prepared using a multi-step approach based on the exfoliation of layered MFI 9 , 15 , followed by centrifugation to remove non-exfoliated particles 18 . This top-down method is time-consuming, costly and low-yield and it produces fragmented nanosheets with submicrometre lateral dimensions. Alternatively, direct (bottom-up) synthesis could produce high-aspect-ratio zeolite nanosheets, with improved yield and at lower cost. Here we use a nanocrystal-seeded growth method triggered by a single rotational intergrowth to synthesize high-aspect-ratio MFI nanosheets with a thickness of 5 nanometres (2.5 unit cells). These high-aspect-ratio nanosheets allow the fabrication of thin and defect-free coatings that effectively cover porous substrates. These coatings can be intergrown to produce high-flux and ultra-selective MFI membranes that compare favourably with other MFI membranes prepared from existing MFI materials (such as exfoliated nanosheets or nanocrystals).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28297708</pmid><doi>10.1038/nature21421</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2017-03, Vol.543 (7647), p.690-694
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1373573
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301/299/1013
639/301/357/1018
639/925/357/551
Biosynthesis
Catalysis
Centrifugation
Chemical industry
Crystals
Energy efficiency
Fabrication
Humanities and Social Sciences
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
letter
Materials research
MATERIALS SCIENCE
Membranes
Membranes (Biology)
Morphology
multidisciplinary
Nanoparticles
Science
Seeds
Separation processes
Transmission electron microscopy
Zeolites
title Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-selective%20high-flux%20membranes%20from%20directly%20synthesized%20zeolite%20nanosheets&rft.jtitle=Nature%20(London)&rft.au=Jeon,%20Mi%20Young&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-03-30&rft.volume=543&rft.issue=7647&rft.spage=690&rft.epage=694&rft.pages=690-694&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature21421&rft_dat=%3Cgale_osti_%3EA504499559%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884788537&rft_id=info:pmid/28297708&rft_galeid=A504499559&rfr_iscdi=true