An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers
The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-05, Vol.121 (20), p.3827-3850 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3850 |
---|---|
container_issue | 20 |
container_start_page | 3827 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 121 |
creator | Lockhart, James P. A Goldsmith, C. Franklin Randazzo, John B Ruscic, Branko Tranter, Robert S |
description | The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths. |
doi_str_mv | 10.1021/acs.jpca.7b01186 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1371560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891888621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-b44bac6ca452301d254cf1cad503e3b04c6552e1403fb0bb097621219ff3b2733</originalsourceid><addsrcrecordid>eNotkM1LAzEQxYMoWKt3j4snD26dycd-HEuttlAQtJ5DNpulW3aTusmC_vemtqeZee_xGH6E3CPMECg-K-1n-4NWs7wCxCK7IBMUFFJBUVzGHYoyFRkrr8mN93sAQEb5hHzMbbL8OZih7Y0NqkuUrZPtzrjBhFbH-zOM9W_imiTszNEY-ii-GO36g_NtaJ09mgu-ypK1d70Z_C25alTnzd15TsnX63K7WKWb97f1Yr5JFS15SCvOK6UzrbigDLCmgusGtaoFMMMq4DoTghrkwJoKqgrKPKNIsWwaVtGcsSl5OPU6H1rpdRuM3mlnrdFBIstRZBBDj6fQYXDfo_FB9q3XpuuUNW70EosSi6KIzTH6dIpGlHLvxsHG7yWCPPKV_2LkK8982R-vFG4C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891888621</pqid></control><display><type>article</type><title>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</title><source>American Chemical Society Journals</source><creator>Lockhart, James P. A ; Goldsmith, C. Franklin ; Randazzo, John B ; Ruscic, Branko ; Tranter, Robert S</creator><creatorcontrib>Lockhart, James P. A ; Goldsmith, C. Franklin ; Randazzo, John B ; Ruscic, Branko ; Tranter, Robert S ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.7b01186</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-05, Vol.121 (20), p.3827-3850</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2212-0172 ; 0000-0003-0225-3880 ; 0000-0002-4372-6990 ; 0000000302253880 ; 0000000243726990 ; 0000000222120172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.7b01186$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.7b01186$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1371560$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lockhart, James P. A</creatorcontrib><creatorcontrib>Goldsmith, C. Franklin</creatorcontrib><creatorcontrib>Randazzo, John B</creatorcontrib><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Tranter, Robert S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkM1LAzEQxYMoWKt3j4snD26dycd-HEuttlAQtJ5DNpulW3aTusmC_vemtqeZee_xGH6E3CPMECg-K-1n-4NWs7wCxCK7IBMUFFJBUVzGHYoyFRkrr8mN93sAQEb5hHzMbbL8OZih7Y0NqkuUrZPtzrjBhFbH-zOM9W_imiTszNEY-ii-GO36g_NtaJ09mgu-ypK1d70Z_C25alTnzd15TsnX63K7WKWb97f1Yr5JFS15SCvOK6UzrbigDLCmgusGtaoFMMMq4DoTghrkwJoKqgrKPKNIsWwaVtGcsSl5OPU6H1rpdRuM3mlnrdFBIstRZBBDj6fQYXDfo_FB9q3XpuuUNW70EosSi6KIzTH6dIpGlHLvxsHG7yWCPPKV_2LkK8982R-vFG4C</recordid><startdate>20170525</startdate><enddate>20170525</enddate><creator>Lockhart, James P. A</creator><creator>Goldsmith, C. Franklin</creator><creator>Randazzo, John B</creator><creator>Ruscic, Branko</creator><creator>Tranter, Robert S</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid><orcidid>https://orcid.org/0000-0003-0225-3880</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid><orcidid>https://orcid.org/0000000302253880</orcidid><orcidid>https://orcid.org/0000000243726990</orcidid><orcidid>https://orcid.org/0000000222120172</orcidid></search><sort><creationdate>20170525</creationdate><title>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</title><author>Lockhart, James P. A ; Goldsmith, C. Franklin ; Randazzo, John B ; Ruscic, Branko ; Tranter, Robert S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-b44bac6ca452301d254cf1cad503e3b04c6552e1403fb0bb097621219ff3b2733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lockhart, James P. A</creatorcontrib><creatorcontrib>Goldsmith, C. Franklin</creatorcontrib><creatorcontrib>Randazzo, John B</creatorcontrib><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Tranter, Robert S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lockhart, James P. A</au><au>Goldsmith, C. Franklin</au><au>Randazzo, John B</au><au>Ruscic, Branko</au><au>Tranter, Robert S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2017-05-25</date><risdate>2017</risdate><volume>121</volume><issue>20</issue><spage>3827</spage><epage>3850</epage><pages>3827-3850</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.7b01186</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid><orcidid>https://orcid.org/0000-0003-0225-3880</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid><orcidid>https://orcid.org/0000000302253880</orcidid><orcidid>https://orcid.org/0000000243726990</orcidid><orcidid>https://orcid.org/0000000222120172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-05, Vol.121 (20), p.3827-3850 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_osti_scitechconnect_1371560 |
source | American Chemical Society Journals |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Experimental%20and%20Theoretical%20Study%20of%20the%20Thermal%20Decomposition%20of%20C4H6%20Isomers&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Lockhart,%20James%20P.%20A&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-05-25&rft.volume=121&rft.issue=20&rft.spage=3827&rft.epage=3850&rft.pages=3827-3850&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.7b01186&rft_dat=%3Cproquest_osti_%3E1891888621%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891888621&rft_id=info:pmid/&rfr_iscdi=true |