An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers

The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2017-05, Vol.121 (20), p.3827-3850
Hauptverfasser: Lockhart, James P. A, Goldsmith, C. Franklin, Randazzo, John B, Ruscic, Branko, Tranter, Robert S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3850
container_issue 20
container_start_page 3827
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 121
creator Lockhart, James P. A
Goldsmith, C. Franklin
Randazzo, John B
Ruscic, Branko
Tranter, Robert S
description The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.
doi_str_mv 10.1021/acs.jpca.7b01186
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1371560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891888621</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-b44bac6ca452301d254cf1cad503e3b04c6552e1403fb0bb097621219ff3b2733</originalsourceid><addsrcrecordid>eNotkM1LAzEQxYMoWKt3j4snD26dycd-HEuttlAQtJ5DNpulW3aTusmC_vemtqeZee_xGH6E3CPMECg-K-1n-4NWs7wCxCK7IBMUFFJBUVzGHYoyFRkrr8mN93sAQEb5hHzMbbL8OZih7Y0NqkuUrZPtzrjBhFbH-zOM9W_imiTszNEY-ii-GO36g_NtaJ09mgu-ypK1d70Z_C25alTnzd15TsnX63K7WKWb97f1Yr5JFS15SCvOK6UzrbigDLCmgusGtaoFMMMq4DoTghrkwJoKqgrKPKNIsWwaVtGcsSl5OPU6H1rpdRuM3mlnrdFBIstRZBBDj6fQYXDfo_FB9q3XpuuUNW70EosSi6KIzTH6dIpGlHLvxsHG7yWCPPKV_2LkK8982R-vFG4C</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891888621</pqid></control><display><type>article</type><title>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</title><source>American Chemical Society Journals</source><creator>Lockhart, James P. A ; Goldsmith, C. Franklin ; Randazzo, John B ; Ruscic, Branko ; Tranter, Robert S</creator><creatorcontrib>Lockhart, James P. A ; Goldsmith, C. Franklin ; Randazzo, John B ; Ruscic, Branko ; Tranter, Robert S ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.7b01186</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2017-05, Vol.121 (20), p.3827-3850</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2212-0172 ; 0000-0003-0225-3880 ; 0000-0002-4372-6990 ; 0000000302253880 ; 0000000243726990 ; 0000000222120172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.7b01186$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.7b01186$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1371560$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lockhart, James P. A</creatorcontrib><creatorcontrib>Goldsmith, C. Franklin</creatorcontrib><creatorcontrib>Randazzo, John B</creatorcontrib><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Tranter, Robert S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkM1LAzEQxYMoWKt3j4snD26dycd-HEuttlAQtJ5DNpulW3aTusmC_vemtqeZee_xGH6E3CPMECg-K-1n-4NWs7wCxCK7IBMUFFJBUVzGHYoyFRkrr8mN93sAQEb5hHzMbbL8OZih7Y0NqkuUrZPtzrjBhFbH-zOM9W_imiTszNEY-ii-GO36g_NtaJ09mgu-ypK1d70Z_C25alTnzd15TsnX63K7WKWb97f1Yr5JFS15SCvOK6UzrbigDLCmgusGtaoFMMMq4DoTghrkwJoKqgrKPKNIsWwaVtGcsSl5OPU6H1rpdRuM3mlnrdFBIstRZBBDj6fQYXDfo_FB9q3XpuuUNW70EosSi6KIzTH6dIpGlHLvxsHG7yWCPPKV_2LkK8982R-vFG4C</recordid><startdate>20170525</startdate><enddate>20170525</enddate><creator>Lockhart, James P. A</creator><creator>Goldsmith, C. Franklin</creator><creator>Randazzo, John B</creator><creator>Ruscic, Branko</creator><creator>Tranter, Robert S</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid><orcidid>https://orcid.org/0000-0003-0225-3880</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid><orcidid>https://orcid.org/0000000302253880</orcidid><orcidid>https://orcid.org/0000000243726990</orcidid><orcidid>https://orcid.org/0000000222120172</orcidid></search><sort><creationdate>20170525</creationdate><title>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</title><author>Lockhart, James P. A ; Goldsmith, C. Franklin ; Randazzo, John B ; Ruscic, Branko ; Tranter, Robert S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-b44bac6ca452301d254cf1cad503e3b04c6552e1403fb0bb097621219ff3b2733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lockhart, James P. A</creatorcontrib><creatorcontrib>Goldsmith, C. Franklin</creatorcontrib><creatorcontrib>Randazzo, John B</creatorcontrib><creatorcontrib>Ruscic, Branko</creatorcontrib><creatorcontrib>Tranter, Robert S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lockhart, James P. A</au><au>Goldsmith, C. Franklin</au><au>Randazzo, John B</au><au>Ruscic, Branko</au><au>Tranter, Robert S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2017-05-25</date><risdate>2017</risdate><volume>121</volume><issue>20</issue><spage>3827</spage><epage>3850</epage><pages>3827-3850</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The chemistry of small unsaturated hydrocarbons, such as 1,3-butadiene (1,3-C4H6), 1,2-butadiene (1,2-C4H6), 2-butyne (2-C4H6), and 1-butyne (1-C4H6), is of central importance to the modeling of combustion systems. These species are important intermediates in combustion processes, and yet their high-temperature chemistry remains poorly understood, with various dissociation and isomerization pathways proposed in the literature. Here we investigate the thermal decompositions of 1,3-C4H6, 1,2-C4H6, 2-C4H6, and 1-C4H6 inside a diaphragmless shock tube, at postshock total pressures of 26–261 Torr and temperatures ranging from 1428 to 2354 K, using laser schlieren densitometry. The experimental work was complemented by high-level ab initio calculations, which collectively provide strong evidence that formally direct dissociation is the major channel for pyrolysis of 1,3-C4H6 and 2-C4H6; these paths have not been previously reported but are critical to reconciling the current work and disparate literature reports. The reaction mechanism presented here simulates the current experiments and experimental data from the literature very well. Pressure- and temperature-dependent rate coefficients are given for the isomerization, formally direct, and direct dissociation paths.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpca.7b01186</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-2212-0172</orcidid><orcidid>https://orcid.org/0000-0003-0225-3880</orcidid><orcidid>https://orcid.org/0000-0002-4372-6990</orcidid><orcidid>https://orcid.org/0000000302253880</orcidid><orcidid>https://orcid.org/0000000243726990</orcidid><orcidid>https://orcid.org/0000000222120172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2017-05, Vol.121 (20), p.3827-3850
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1371560
source American Chemical Society Journals
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title An Experimental and Theoretical Study of the Thermal Decomposition of C4H6 Isomers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Experimental%20and%20Theoretical%20Study%20of%20the%20Thermal%20Decomposition%20of%20C4H6%20Isomers&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Lockhart,%20James%20P.%20A&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-05-25&rft.volume=121&rft.issue=20&rft.spage=3827&rft.epage=3850&rft.pages=3827-3850&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.7b01186&rft_dat=%3Cproquest_osti_%3E1891888621%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1891888621&rft_id=info:pmid/&rfr_iscdi=true