BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework

This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2017-08, Vol.20 (8), p.1439-1462
Hauptverfasser: Wang, Qi, Sprague, Michael A., Jonkman, Jason, Johnson, Nick, Jonkman, Bonnie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1462
container_issue 8
container_start_page 1439
container_title Wind energy (Chichester, England)
container_volume 20
creator Wang, Qi
Sprague, Michael A.
Jonkman, Jason
Johnson, Nick
Jonkman, Bonnie
description This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/we.2101
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1371521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917649376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</originalsourceid><addsrcrecordid>eNp10L1OwzAUBeAIgUQpiFewYGBAKb52_sxWSgtIlZCgiNFybIe45KfYKVE3HoFn5ElIG1amc4ZPV1fH804BjwBjctXqEQEMe94AMGM-JCTY3_XQD0gQHHpHzi0x7ggkA-_pRovydlNdI4Fy85b_fH1nRunCNBvUmkqhZm1TU2mUFkJp5OriU1tkKtTkGs3GzwtU1mpdCIsyK0rd1vb92DvIROH0yV8OvZfZdDG59-ePdw-T8dyXNCHgEwaKsIiKOMVCU5VJSpVKwijLiMSY4SSWmIpUBRFLUykwqAwzSYI4ZAkQRYfeWX-3do3hTppGy1zWVaVlw4HGEBLo0HmPVrb-WGvX8GW9tlX3FwcGcRQwGkeduuiVtLVzVmd8ZU0p7IYD5ttVeav5dtVOXvayNYXe_Mf463SnfwF2SXZ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917649376</pqid></control><display><type>article</type><title>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Qi ; Sprague, Michael A. ; Jonkman, Jason ; Johnson, Nick ; Jonkman, Bonnie</creator><creatorcontrib>Wang, Qi ; Sprague, Michael A. ; Jonkman, Jason ; Johnson, Nick ; Jonkman, Bonnie ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2101</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>Accuracy ; Aeroelasticity ; Beam theory (structures) ; Composite materials ; Computer simulation ; Displacement ; Engineering ; FAST ; Finite element method ; geometrically exact beam theory ; Legendre spectral finite element ; Mathematical models ; Modularization ; Nodes ; Reviews ; structural dynamics ; Turbine blades ; Turbines ; WIND ENERGY ; wind turbine analysis ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2017-08, Vol.20 (8), p.1439-1462</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</citedby><cites>FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2101$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2101$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1371521$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sprague, Michael A.</creatorcontrib><creatorcontrib>Jonkman, Jason</creatorcontrib><creatorcontrib>Johnson, Nick</creatorcontrib><creatorcontrib>Jonkman, Bonnie</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</title><title>Wind energy (Chichester, England)</title><description>This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley &amp; Sons, Ltd.</description><subject>Accuracy</subject><subject>Aeroelasticity</subject><subject>Beam theory (structures)</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Displacement</subject><subject>Engineering</subject><subject>FAST</subject><subject>Finite element method</subject><subject>geometrically exact beam theory</subject><subject>Legendre spectral finite element</subject><subject>Mathematical models</subject><subject>Modularization</subject><subject>Nodes</subject><subject>Reviews</subject><subject>structural dynamics</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>WIND ENERGY</subject><subject>wind turbine analysis</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBeAIgUQpiFewYGBAKb52_sxWSgtIlZCgiNFybIe45KfYKVE3HoFn5ElIG1amc4ZPV1fH804BjwBjctXqEQEMe94AMGM-JCTY3_XQD0gQHHpHzi0x7ggkA-_pRovydlNdI4Fy85b_fH1nRunCNBvUmkqhZm1TU2mUFkJp5OriU1tkKtTkGs3GzwtU1mpdCIsyK0rd1vb92DvIROH0yV8OvZfZdDG59-ePdw-T8dyXNCHgEwaKsIiKOMVCU5VJSpVKwijLiMSY4SSWmIpUBRFLUykwqAwzSYI4ZAkQRYfeWX-3do3hTppGy1zWVaVlw4HGEBLo0HmPVrb-WGvX8GW9tlX3FwcGcRQwGkeduuiVtLVzVmd8ZU0p7IYD5ttVeav5dtVOXvayNYXe_Mf463SnfwF2SXZ4</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Wang, Qi</creator><creator>Sprague, Michael A.</creator><creator>Jonkman, Jason</creator><creator>Johnson, Nick</creator><creator>Jonkman, Bonnie</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201708</creationdate><title>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</title><author>Wang, Qi ; Sprague, Michael A. ; Jonkman, Jason ; Johnson, Nick ; Jonkman, Bonnie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Aeroelasticity</topic><topic>Beam theory (structures)</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Displacement</topic><topic>Engineering</topic><topic>FAST</topic><topic>Finite element method</topic><topic>geometrically exact beam theory</topic><topic>Legendre spectral finite element</topic><topic>Mathematical models</topic><topic>Modularization</topic><topic>Nodes</topic><topic>Reviews</topic><topic>structural dynamics</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>WIND ENERGY</topic><topic>wind turbine analysis</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sprague, Michael A.</creatorcontrib><creatorcontrib>Jonkman, Jason</creatorcontrib><creatorcontrib>Johnson, Nick</creatorcontrib><creatorcontrib>Jonkman, Bonnie</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Sprague, Michael A.</au><au>Jonkman, Jason</au><au>Johnson, Nick</au><au>Jonkman, Bonnie</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>20</volume><issue>8</issue><spage>1439</spage><epage>1462</epage><pages>1439-1462</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2101</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2017-08, Vol.20 (8), p.1439-1462
issn 1095-4244
1099-1824
language eng
recordid cdi_osti_scitechconnect_1371521
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Aeroelasticity
Beam theory (structures)
Composite materials
Computer simulation
Displacement
Engineering
FAST
Finite element method
geometrically exact beam theory
Legendre spectral finite element
Mathematical models
Modularization
Nodes
Reviews
structural dynamics
Turbine blades
Turbines
WIND ENERGY
wind turbine analysis
Wind turbines
title BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BeamDyn:%20a%20high%E2%80%90fidelity%20wind%20turbine%20blade%20solver%20in%20the%20FAST%20modular%20framework&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Wang,%20Qi&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017-08&rft.volume=20&rft.issue=8&rft.spage=1439&rft.epage=1462&rft.pages=1439-1462&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2101&rft_dat=%3Cproquest_osti_%3E1917649376%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917649376&rft_id=info:pmid/&rfr_iscdi=true