BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework
This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An L...
Gespeichert in:
Veröffentlicht in: | Wind energy (Chichester, England) England), 2017-08, Vol.20 (8), p.1439-1462 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1462 |
---|---|
container_issue | 8 |
container_start_page | 1439 |
container_title | Wind energy (Chichester, England) |
container_volume | 20 |
creator | Wang, Qi Sprague, Michael A. Jonkman, Jason Johnson, Nick Jonkman, Bonnie |
description | This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/we.2101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1371521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917649376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</originalsourceid><addsrcrecordid>eNp10L1OwzAUBeAIgUQpiFewYGBAKb52_sxWSgtIlZCgiNFybIe45KfYKVE3HoFn5ElIG1amc4ZPV1fH804BjwBjctXqEQEMe94AMGM-JCTY3_XQD0gQHHpHzi0x7ggkA-_pRovydlNdI4Fy85b_fH1nRunCNBvUmkqhZm1TU2mUFkJp5OriU1tkKtTkGs3GzwtU1mpdCIsyK0rd1vb92DvIROH0yV8OvZfZdDG59-ePdw-T8dyXNCHgEwaKsIiKOMVCU5VJSpVKwijLiMSY4SSWmIpUBRFLUykwqAwzSYI4ZAkQRYfeWX-3do3hTppGy1zWVaVlw4HGEBLo0HmPVrb-WGvX8GW9tlX3FwcGcRQwGkeduuiVtLVzVmd8ZU0p7IYD5ttVeav5dtVOXvayNYXe_Mf463SnfwF2SXZ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917649376</pqid></control><display><type>article</type><title>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Qi ; Sprague, Michael A. ; Jonkman, Jason ; Johnson, Nick ; Jonkman, Bonnie</creator><creatorcontrib>Wang, Qi ; Sprague, Michael A. ; Jonkman, Jason ; Johnson, Nick ; Jonkman, Bonnie ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2101</identifier><language>eng</language><publisher>Bognor Regis: John Wiley & Sons, Inc</publisher><subject>Accuracy ; Aeroelasticity ; Beam theory (structures) ; Composite materials ; Computer simulation ; Displacement ; Engineering ; FAST ; Finite element method ; geometrically exact beam theory ; Legendre spectral finite element ; Mathematical models ; Modularization ; Nodes ; Reviews ; structural dynamics ; Turbine blades ; Turbines ; WIND ENERGY ; wind turbine analysis ; Wind turbines</subject><ispartof>Wind energy (Chichester, England), 2017-08, Vol.20 (8), p.1439-1462</ispartof><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</citedby><cites>FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2101$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2101$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1371521$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sprague, Michael A.</creatorcontrib><creatorcontrib>Jonkman, Jason</creatorcontrib><creatorcontrib>Johnson, Nick</creatorcontrib><creatorcontrib>Jonkman, Bonnie</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</title><title>Wind energy (Chichester, England)</title><description>This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley & Sons, Ltd.</description><subject>Accuracy</subject><subject>Aeroelasticity</subject><subject>Beam theory (structures)</subject><subject>Composite materials</subject><subject>Computer simulation</subject><subject>Displacement</subject><subject>Engineering</subject><subject>FAST</subject><subject>Finite element method</subject><subject>geometrically exact beam theory</subject><subject>Legendre spectral finite element</subject><subject>Mathematical models</subject><subject>Modularization</subject><subject>Nodes</subject><subject>Reviews</subject><subject>structural dynamics</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>WIND ENERGY</subject><subject>wind turbine analysis</subject><subject>Wind turbines</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBeAIgUQpiFewYGBAKb52_sxWSgtIlZCgiNFybIe45KfYKVE3HoFn5ElIG1amc4ZPV1fH804BjwBjctXqEQEMe94AMGM-JCTY3_XQD0gQHHpHzi0x7ggkA-_pRovydlNdI4Fy85b_fH1nRunCNBvUmkqhZm1TU2mUFkJp5OriU1tkKtTkGs3GzwtU1mpdCIsyK0rd1vb92DvIROH0yV8OvZfZdDG59-ePdw-T8dyXNCHgEwaKsIiKOMVCU5VJSpVKwijLiMSY4SSWmIpUBRFLUykwqAwzSYI4ZAkQRYfeWX-3do3hTppGy1zWVaVlw4HGEBLo0HmPVrb-WGvX8GW9tlX3FwcGcRQwGkeduuiVtLVzVmd8ZU0p7IYD5ttVeav5dtVOXvayNYXe_Mf463SnfwF2SXZ4</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Wang, Qi</creator><creator>Sprague, Michael A.</creator><creator>Jonkman, Jason</creator><creator>Johnson, Nick</creator><creator>Jonkman, Bonnie</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201708</creationdate><title>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</title><author>Wang, Qi ; Sprague, Michael A. ; Jonkman, Jason ; Johnson, Nick ; Jonkman, Bonnie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3821-291d2963a7b0ae3dfc33dd856ff2c009087c03abd469bbca01df09c24759812d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Aeroelasticity</topic><topic>Beam theory (structures)</topic><topic>Composite materials</topic><topic>Computer simulation</topic><topic>Displacement</topic><topic>Engineering</topic><topic>FAST</topic><topic>Finite element method</topic><topic>geometrically exact beam theory</topic><topic>Legendre spectral finite element</topic><topic>Mathematical models</topic><topic>Modularization</topic><topic>Nodes</topic><topic>Reviews</topic><topic>structural dynamics</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>WIND ENERGY</topic><topic>wind turbine analysis</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Sprague, Michael A.</creatorcontrib><creatorcontrib>Jonkman, Jason</creatorcontrib><creatorcontrib>Johnson, Nick</creatorcontrib><creatorcontrib>Jonkman, Bonnie</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Sprague, Michael A.</au><au>Jonkman, Jason</au><au>Johnson, Nick</au><au>Jonkman, Bonnie</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>20</volume><issue>8</issue><spage>1439</spage><epage>1462</epage><pages>1439-1462</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>This paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre‐spectral‐finite‐element (LSFE) method. The displacement‐based geometrically exact beam theory is presented, and the special treatment of three‐dimensional rotation parameters is reviewed. An LSFE is a high‐order finite element with nodes located at the Gauss–Legendre–Lobatto points. These elements can be an order of magnitude more computationally efficient than low‐order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite‐material wind turbine blades within the FAST aeroelastic engineering model. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand‐alone high‐fidelity beam tool. Copyright © 2017 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/we.2101</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-4244 |
ispartof | Wind energy (Chichester, England), 2017-08, Vol.20 (8), p.1439-1462 |
issn | 1095-4244 1099-1824 |
language | eng |
recordid | cdi_osti_scitechconnect_1371521 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Aeroelasticity Beam theory (structures) Composite materials Computer simulation Displacement Engineering FAST Finite element method geometrically exact beam theory Legendre spectral finite element Mathematical models Modularization Nodes Reviews structural dynamics Turbine blades Turbines WIND ENERGY wind turbine analysis Wind turbines |
title | BeamDyn: a high‐fidelity wind turbine blade solver in the FAST modular framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BeamDyn:%20a%20high%E2%80%90fidelity%20wind%20turbine%20blade%20solver%20in%20the%20FAST%20modular%20framework&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Wang,%20Qi&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017-08&rft.volume=20&rft.issue=8&rft.spage=1439&rft.epage=1462&rft.pages=1439-1462&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2101&rft_dat=%3Cproquest_osti_%3E1917649376%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917649376&rft_id=info:pmid/&rfr_iscdi=true |