The low salinity effect at high temperatures

The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN=3.98mgKOH/g, base number,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2017-07, Vol.200 (C), p.419-426
Hauptverfasser: Xie, Quan, Brady, Patrick V., Pooryousefy, Ehsan, Zhou, Daiyu, Liu, Yongbing, Saeedi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue C
container_start_page 419
container_title Fuel (Guildford)
container_volume 200
creator Xie, Quan
Brady, Patrick V.
Pooryousefy, Ehsan
Zhou, Daiyu
Liu, Yongbing
Saeedi, Ali
description The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN=3.98mgKOH/g, base number, BN=1.3mgKOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140°C) and pressure (20, 30, 40, and 50MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. Low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.
doi_str_mv 10.1016/j.fuel.2017.03.088
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1369448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236117303629</els_id><sourcerecordid>2006795234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-9c48bba0f7b6852f339e0bef207ff2e04c32f1c9372b6f87fbb6b7a136c8d2db3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkwRrCRc20nsSCyo4k-qxFJmK3aviaM2KbYL6tvjqMxMXs53dXwIuaZQUKD1fV_YPW4KBlQUwAuQ8oTMqBQ8F7Tip2QGicoZr-k5uQihBwAhq3JG7lYdZpvxJwvtxg0uHjK0Fk3M2ph17rPLIm536Nu49xguyZltNwGv_t45-Xh-Wi1e8-X7y9vicZmbktcxb0wptW7BCl3LilnOGwSNloGwliGUhjNLTcMF07WVwmpda9FSXhu5ZmvN5-TmeHcM0algXETTmXEYkphKWFOWMkG3R2jnx689hqj6ce-H5KUYQC2aivEyUexIGT-G4NGqnXfb1h8UBTWlU72a0qkpnQKuUro0ejiOMH3y26GfHHAwuHZ-UliP7r_5L-Q_djQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006795234</pqid></control><display><type>article</type><title>The low salinity effect at high temperatures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Xie, Quan ; Brady, Patrick V. ; Pooryousefy, Ehsan ; Zhou, Daiyu ; Liu, Yongbing ; Saeedi, Ali</creator><creatorcontrib>Xie, Quan ; Brady, Patrick V. ; Pooryousefy, Ehsan ; Zhou, Daiyu ; Liu, Yongbing ; Saeedi, Ali ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN=3.98mgKOH/g, base number, BN=1.3mgKOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140°C) and pressure (20, 30, 40, and 50MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. Low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2017.03.088</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>02 PETROLEUM ; Complexation ; Contact angle ; Contact pressure ; Dilution ; Disjoining pressure ; Enhanced Oil Recovery ; Flood predictions ; Flooding ; High pressure ; High temperature ; Interfaces ; Kaolinite ; Low salinity water ; Mathematical models ; Oil ; Pressure ; Pressure effects ; Reservoirs ; Saline water ; Salinity ; Salinity effects ; Sandstone ; Surface complexation model ; Temperature effects ; Water chemistry ; Water flooding ; Water temperature ; Wettability ; Zeta potential</subject><ispartof>Fuel (Guildford), 2017-07, Vol.200 (C), p.419-426</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-9c48bba0f7b6852f339e0bef207ff2e04c32f1c9372b6f87fbb6b7a136c8d2db3</citedby><cites>FETCH-LOGICAL-c436t-9c48bba0f7b6852f339e0bef207ff2e04c32f1c9372b6f87fbb6b7a136c8d2db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2017.03.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1369448$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Quan</creatorcontrib><creatorcontrib>Brady, Patrick V.</creatorcontrib><creatorcontrib>Pooryousefy, Ehsan</creatorcontrib><creatorcontrib>Zhou, Daiyu</creatorcontrib><creatorcontrib>Liu, Yongbing</creatorcontrib><creatorcontrib>Saeedi, Ali</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>The low salinity effect at high temperatures</title><title>Fuel (Guildford)</title><description>The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN=3.98mgKOH/g, base number, BN=1.3mgKOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140°C) and pressure (20, 30, 40, and 50MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. Low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.</description><subject>02 PETROLEUM</subject><subject>Complexation</subject><subject>Contact angle</subject><subject>Contact pressure</subject><subject>Dilution</subject><subject>Disjoining pressure</subject><subject>Enhanced Oil Recovery</subject><subject>Flood predictions</subject><subject>Flooding</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Interfaces</subject><subject>Kaolinite</subject><subject>Low salinity water</subject><subject>Mathematical models</subject><subject>Oil</subject><subject>Pressure</subject><subject>Pressure effects</subject><subject>Reservoirs</subject><subject>Saline water</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>Sandstone</subject><subject>Surface complexation model</subject><subject>Temperature effects</subject><subject>Water chemistry</subject><subject>Water flooding</subject><subject>Water temperature</subject><subject>Wettability</subject><subject>Zeta potential</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkwRrCRc20nsSCyo4k-qxFJmK3aviaM2KbYL6tvjqMxMXs53dXwIuaZQUKD1fV_YPW4KBlQUwAuQ8oTMqBQ8F7Tip2QGicoZr-k5uQihBwAhq3JG7lYdZpvxJwvtxg0uHjK0Fk3M2ph17rPLIm536Nu49xguyZltNwGv_t45-Xh-Wi1e8-X7y9vicZmbktcxb0wptW7BCl3LilnOGwSNloGwliGUhjNLTcMF07WVwmpda9FSXhu5ZmvN5-TmeHcM0algXETTmXEYkphKWFOWMkG3R2jnx689hqj6ce-H5KUYQC2aivEyUexIGT-G4NGqnXfb1h8UBTWlU72a0qkpnQKuUro0ejiOMH3y26GfHHAwuHZ-UliP7r_5L-Q_djQ</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Xie, Quan</creator><creator>Brady, Patrick V.</creator><creator>Pooryousefy, Ehsan</creator><creator>Zhou, Daiyu</creator><creator>Liu, Yongbing</creator><creator>Saeedi, Ali</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170715</creationdate><title>The low salinity effect at high temperatures</title><author>Xie, Quan ; Brady, Patrick V. ; Pooryousefy, Ehsan ; Zhou, Daiyu ; Liu, Yongbing ; Saeedi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-9c48bba0f7b6852f339e0bef207ff2e04c32f1c9372b6f87fbb6b7a136c8d2db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>02 PETROLEUM</topic><topic>Complexation</topic><topic>Contact angle</topic><topic>Contact pressure</topic><topic>Dilution</topic><topic>Disjoining pressure</topic><topic>Enhanced Oil Recovery</topic><topic>Flood predictions</topic><topic>Flooding</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Interfaces</topic><topic>Kaolinite</topic><topic>Low salinity water</topic><topic>Mathematical models</topic><topic>Oil</topic><topic>Pressure</topic><topic>Pressure effects</topic><topic>Reservoirs</topic><topic>Saline water</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>Sandstone</topic><topic>Surface complexation model</topic><topic>Temperature effects</topic><topic>Water chemistry</topic><topic>Water flooding</topic><topic>Water temperature</topic><topic>Wettability</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Quan</creatorcontrib><creatorcontrib>Brady, Patrick V.</creatorcontrib><creatorcontrib>Pooryousefy, Ehsan</creatorcontrib><creatorcontrib>Zhou, Daiyu</creatorcontrib><creatorcontrib>Liu, Yongbing</creatorcontrib><creatorcontrib>Saeedi, Ali</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Quan</au><au>Brady, Patrick V.</au><au>Pooryousefy, Ehsan</au><au>Zhou, Daiyu</au><au>Liu, Yongbing</au><au>Saeedi, Ali</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The low salinity effect at high temperatures</atitle><jtitle>Fuel (Guildford)</jtitle><date>2017-07-15</date><risdate>2017</risdate><volume>200</volume><issue>C</issue><spage>419</spage><epage>426</epage><pages>419-426</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN=3.98mgKOH/g, base number, BN=1.3mgKOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140°C) and pressure (20, 30, 40, and 50MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. Low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2017.03.088</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2017-07, Vol.200 (C), p.419-426
issn 0016-2361
1873-7153
language eng
recordid cdi_osti_scitechconnect_1369448
source Elsevier ScienceDirect Journals Complete
subjects 02 PETROLEUM
Complexation
Contact angle
Contact pressure
Dilution
Disjoining pressure
Enhanced Oil Recovery
Flood predictions
Flooding
High pressure
High temperature
Interfaces
Kaolinite
Low salinity water
Mathematical models
Oil
Pressure
Pressure effects
Reservoirs
Saline water
Salinity
Salinity effects
Sandstone
Surface complexation model
Temperature effects
Water chemistry
Water flooding
Water temperature
Wettability
Zeta potential
title The low salinity effect at high temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20low%20salinity%20effect%20at%20high%20temperatures&rft.jtitle=Fuel%20(Guildford)&rft.au=Xie,%20Quan&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2017-07-15&rft.volume=200&rft.issue=C&rft.spage=419&rft.epage=426&rft.pages=419-426&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2017.03.088&rft_dat=%3Cproquest_osti_%3E2006795234%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2006795234&rft_id=info:pmid/&rft_els_id=S0016236117303629&rfr_iscdi=true