Femtosecond response of polyatomic molecules to ultra-intense hard X-rays
Upon exposure to ultra-intense, hard X-ray pulses, polyatomic molecules containing one heavy atom reach a much higher degree of ionization than do individual heavy atoms, contrary to previous assumptions. Ultrafast molecular response to intense X-rays X-ray free-electron lasers offer many new applic...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2017-06, Vol.546 (7656), p.129-132 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | 7656 |
container_start_page | 129 |
container_title | Nature (London) |
container_volume | 546 |
creator | Rudenko, A. Inhester, L. Hanasaki, K. Li, X. Robatjazi, S. J. Erk, B. Boll, R. Toyota, K. Hao, Y. Vendrell, O. Bomme, C. Savelyev, E. Rudek, B. Foucar, L. Southworth, S. H. Lehmann, C. S. Kraessig, B. Marchenko, T. Simon, M. Ueda, K. Ferguson, K. R. Bucher, M. Gorkhover, T. Carron, S. Alonso-Mori, R. Koglin, J. E. Correa, J. Williams, G. J. Boutet, S. Young, L. Bostedt, C. Son, S.-K. Santra, R. Rolles, D. |
description | Upon exposure to ultra-intense, hard X-ray pulses, polyatomic molecules containing one heavy atom reach a much higher degree of ionization than do individual heavy atoms, contrary to previous assumptions.
Ultrafast molecular response to intense X-rays
X-ray free-electron lasers offer many new applications such as the ability to structurally probe fast biological processes. This requires the use of hard and intense X-ray pulses, but the behaviour of matter under such conditions has not been fully explored. Artem Rudenko
et al
. show that when exposing small polyatomic molecules that contain one heavy atom to hard X-ray pulses with ultra-high intensities, the response is qualitatively different from what is seen in experiments carried out under less extreme conditions. The observed ionization of the molecule is considerably enhanced compared to that of an individual heavy atom under the same conditions, owing to ultrafast charge transfer within the molecule that replenishes the electrons removed from the heavy atom, enabling further ionization. Being able to account for this effect will aid further use of X-ray free-electron lasers for studying biological systems.
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions
1
,
2
,
3
,
4
,
5
,
6
,
7
. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10
20
watts per square centimetre)
3
,
5
. However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption
8
,
12
,
13
,
18
, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge
14
,
15
,
16
,
17
,
19
,
20
. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure
2
,
3
—the ionization of heavy atoms increases the local radiation damage |
doi_str_mv | 10.1038/nature22373 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1369420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A493824198</galeid><sourcerecordid>A493824198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-392847f063f4bca2dd6963d08f33bb519a035a446ff1969d0e4e2d58a5e99ba63</originalsourceid><addsrcrecordid>eNpt0s2L1DAYB-AiijuunrxLWS8u2jVfTZPjsLjuwIDgB3gLafp2pkubzCapOP-9KV3XGRlyCCRPXpJf3ix7jdEVRlR8tDqOHgihFX2SLTCreMG4qJ5mC4SIKJCg_Cx7EcIdQqjEFXuenRFRcllJuchWNzBEF8A42-Qews7ZALlr853r9zq6oTP54HowYw8hjy4f--h10dkIE9xq3-Q_C6_34WX2rNV9gFcP83n24-bT9-vbYv3l8-p6uS4MFywWVBLBqhZx2rLaaNI0XHLaINFSWtcllhrRUjPG2xZLLhsEDEhTCl2ClLXm9Dy7mOu6EDsVTBfBbNP1LZioMOWSEZTQ5Yy2ulc73w3a75XTnbpdrtW0hqjkTFboF0723Wx33t2PEKIaumCg77UFNwaFJWISkVKQRN_-R-_c6G167qQ4RhXj1T-10T2ozrYuRWamomrJJBWEYSmSKk6oDVjwuncW2i4tH_mLE97sunt1iK5OoDQaSD95surl0YFkIvyOGz2GoFbfvh7b97M13oXgoX1MFiM1taI6aMWk3zxkNdYDNI_2b-8l8GEGIW3ZDfiDME_U-wN1R-NR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1906107467</pqid></control><display><type>article</type><title>Femtosecond response of polyatomic molecules to ultra-intense hard X-rays</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Rudenko, A. ; Inhester, L. ; Hanasaki, K. ; Li, X. ; Robatjazi, S. J. ; Erk, B. ; Boll, R. ; Toyota, K. ; Hao, Y. ; Vendrell, O. ; Bomme, C. ; Savelyev, E. ; Rudek, B. ; Foucar, L. ; Southworth, S. H. ; Lehmann, C. S. ; Kraessig, B. ; Marchenko, T. ; Simon, M. ; Ueda, K. ; Ferguson, K. R. ; Bucher, M. ; Gorkhover, T. ; Carron, S. ; Alonso-Mori, R. ; Koglin, J. E. ; Correa, J. ; Williams, G. J. ; Boutet, S. ; Young, L. ; Bostedt, C. ; Son, S.-K. ; Santra, R. ; Rolles, D.</creator><creatorcontrib>Rudenko, A. ; Inhester, L. ; Hanasaki, K. ; Li, X. ; Robatjazi, S. J. ; Erk, B. ; Boll, R. ; Toyota, K. ; Hao, Y. ; Vendrell, O. ; Bomme, C. ; Savelyev, E. ; Rudek, B. ; Foucar, L. ; Southworth, S. H. ; Lehmann, C. S. ; Kraessig, B. ; Marchenko, T. ; Simon, M. ; Ueda, K. ; Ferguson, K. R. ; Bucher, M. ; Gorkhover, T. ; Carron, S. ; Alonso-Mori, R. ; Koglin, J. E. ; Correa, J. ; Williams, G. J. ; Boutet, S. ; Young, L. ; Bostedt, C. ; Son, S.-K. ; Santra, R. ; Rolles, D. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Upon exposure to ultra-intense, hard X-ray pulses, polyatomic molecules containing one heavy atom reach a much higher degree of ionization than do individual heavy atoms, contrary to previous assumptions.
Ultrafast molecular response to intense X-rays
X-ray free-electron lasers offer many new applications such as the ability to structurally probe fast biological processes. This requires the use of hard and intense X-ray pulses, but the behaviour of matter under such conditions has not been fully explored. Artem Rudenko
et al
. show that when exposing small polyatomic molecules that contain one heavy atom to hard X-ray pulses with ultra-high intensities, the response is qualitatively different from what is seen in experiments carried out under less extreme conditions. The observed ionization of the molecule is considerably enhanced compared to that of an individual heavy atom under the same conditions, owing to ultrafast charge transfer within the molecule that replenishes the electrons removed from the heavy atom, enabling further ionization. Being able to account for this effect will aid further use of X-ray free-electron lasers for studying biological systems.
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions
1
,
2
,
3
,
4
,
5
,
6
,
7
. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10
20
watts per square centimetre)
3
,
5
. However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption
8
,
12
,
13
,
18
, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge
14
,
15
,
16
,
17
,
19
,
20
. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure
2
,
3
—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects
21
,
22
and has been suggested as a way of phasing the diffraction data
23
,
24
. On the basis of experiments using either soft or less-intense hard X-rays
14
,
15
,
16
,
17
,
18
,
19
,
25
, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10
20
watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature22373</identifier><identifier>PMID: 28569799</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1121 ; 639/766/400/1106 ; Absorption ; Atomic structure ; Biological materials ; Carbon ; Charge transfer ; Chemical Sciences ; Complex systems ; Cross-sections ; Crystallography ; Crystallography - methods ; Crystals ; Diffraction ; Diffraction patterns ; Dynamic structural analysis ; Dynamical systems ; Electrons ; Emission ; Feasibility ; Femtosecond lasers ; Free electron lasers ; Hard X-rays ; Humanities and Social Sciences ; Imaging ; Iodine ; Iodine - chemistry ; Ionization ; Ionizing radiation ; Ions ; Irradiation ; Kinetics ; Lasers ; letter ; Molecular physics ; Molecular structure ; multidisciplinary ; Nanocrystals ; Photons ; Physics ; Physiological aspects ; Polyatomic molecules ; Protein Conformation ; Proteins - chemistry ; Radiation ; Radiation damage ; Science ; Soft x rays ; Static Electricity ; Target recognition ; Time Factors ; X-Rays</subject><ispartof>Nature (London), 2017-06, Vol.546 (7656), p.129-132</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2017</rights><rights>COPYRIGHT 2017 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 1, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-392847f063f4bca2dd6963d08f33bb519a035a446ff1969d0e4e2d58a5e99ba63</citedby><cites>FETCH-LOGICAL-c684t-392847f063f4bca2dd6963d08f33bb519a035a446ff1969d0e4e2d58a5e99ba63</cites><orcidid>0000-0002-8915-8319 ; 0000-0002-2251-039X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature22373$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature22373$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28569799$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03964970$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1369420$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rudenko, A.</creatorcontrib><creatorcontrib>Inhester, L.</creatorcontrib><creatorcontrib>Hanasaki, K.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Robatjazi, S. J.</creatorcontrib><creatorcontrib>Erk, B.</creatorcontrib><creatorcontrib>Boll, R.</creatorcontrib><creatorcontrib>Toyota, K.</creatorcontrib><creatorcontrib>Hao, Y.</creatorcontrib><creatorcontrib>Vendrell, O.</creatorcontrib><creatorcontrib>Bomme, C.</creatorcontrib><creatorcontrib>Savelyev, E.</creatorcontrib><creatorcontrib>Rudek, B.</creatorcontrib><creatorcontrib>Foucar, L.</creatorcontrib><creatorcontrib>Southworth, S. H.</creatorcontrib><creatorcontrib>Lehmann, C. S.</creatorcontrib><creatorcontrib>Kraessig, B.</creatorcontrib><creatorcontrib>Marchenko, T.</creatorcontrib><creatorcontrib>Simon, M.</creatorcontrib><creatorcontrib>Ueda, K.</creatorcontrib><creatorcontrib>Ferguson, K. R.</creatorcontrib><creatorcontrib>Bucher, M.</creatorcontrib><creatorcontrib>Gorkhover, T.</creatorcontrib><creatorcontrib>Carron, S.</creatorcontrib><creatorcontrib>Alonso-Mori, R.</creatorcontrib><creatorcontrib>Koglin, J. E.</creatorcontrib><creatorcontrib>Correa, J.</creatorcontrib><creatorcontrib>Williams, G. J.</creatorcontrib><creatorcontrib>Boutet, S.</creatorcontrib><creatorcontrib>Young, L.</creatorcontrib><creatorcontrib>Bostedt, C.</creatorcontrib><creatorcontrib>Son, S.-K.</creatorcontrib><creatorcontrib>Santra, R.</creatorcontrib><creatorcontrib>Rolles, D.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Femtosecond response of polyatomic molecules to ultra-intense hard X-rays</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Upon exposure to ultra-intense, hard X-ray pulses, polyatomic molecules containing one heavy atom reach a much higher degree of ionization than do individual heavy atoms, contrary to previous assumptions.
Ultrafast molecular response to intense X-rays
X-ray free-electron lasers offer many new applications such as the ability to structurally probe fast biological processes. This requires the use of hard and intense X-ray pulses, but the behaviour of matter under such conditions has not been fully explored. Artem Rudenko
et al
. show that when exposing small polyatomic molecules that contain one heavy atom to hard X-ray pulses with ultra-high intensities, the response is qualitatively different from what is seen in experiments carried out under less extreme conditions. The observed ionization of the molecule is considerably enhanced compared to that of an individual heavy atom under the same conditions, owing to ultrafast charge transfer within the molecule that replenishes the electrons removed from the heavy atom, enabling further ionization. Being able to account for this effect will aid further use of X-ray free-electron lasers for studying biological systems.
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions
1
,
2
,
3
,
4
,
5
,
6
,
7
. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10
20
watts per square centimetre)
3
,
5
. However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption
8
,
12
,
13
,
18
, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge
14
,
15
,
16
,
17
,
19
,
20
. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure
2
,
3
—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects
21
,
22
and has been suggested as a way of phasing the diffraction data
23
,
24
. On the basis of experiments using either soft or less-intense hard X-rays
14
,
15
,
16
,
17
,
18
,
19
,
25
, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10
20
watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.</description><subject>639/766/36/1121</subject><subject>639/766/400/1106</subject><subject>Absorption</subject><subject>Atomic structure</subject><subject>Biological materials</subject><subject>Carbon</subject><subject>Charge transfer</subject><subject>Chemical Sciences</subject><subject>Complex systems</subject><subject>Cross-sections</subject><subject>Crystallography</subject><subject>Crystallography - methods</subject><subject>Crystals</subject><subject>Diffraction</subject><subject>Diffraction patterns</subject><subject>Dynamic structural analysis</subject><subject>Dynamical systems</subject><subject>Electrons</subject><subject>Emission</subject><subject>Feasibility</subject><subject>Femtosecond lasers</subject><subject>Free electron lasers</subject><subject>Hard X-rays</subject><subject>Humanities and Social Sciences</subject><subject>Imaging</subject><subject>Iodine</subject><subject>Iodine - chemistry</subject><subject>Ionization</subject><subject>Ionizing radiation</subject><subject>Ions</subject><subject>Irradiation</subject><subject>Kinetics</subject><subject>Lasers</subject><subject>letter</subject><subject>Molecular physics</subject><subject>Molecular structure</subject><subject>multidisciplinary</subject><subject>Nanocrystals</subject><subject>Photons</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Polyatomic molecules</subject><subject>Protein Conformation</subject><subject>Proteins - chemistry</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Science</subject><subject>Soft x rays</subject><subject>Static Electricity</subject><subject>Target recognition</subject><subject>Time Factors</subject><subject>X-Rays</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0s2L1DAYB-AiijuunrxLWS8u2jVfTZPjsLjuwIDgB3gLafp2pkubzCapOP-9KV3XGRlyCCRPXpJf3ix7jdEVRlR8tDqOHgihFX2SLTCreMG4qJ5mC4SIKJCg_Cx7EcIdQqjEFXuenRFRcllJuchWNzBEF8A42-Qews7ZALlr853r9zq6oTP54HowYw8hjy4f--h10dkIE9xq3-Q_C6_34WX2rNV9gFcP83n24-bT9-vbYv3l8-p6uS4MFywWVBLBqhZx2rLaaNI0XHLaINFSWtcllhrRUjPG2xZLLhsEDEhTCl2ClLXm9Dy7mOu6EDsVTBfBbNP1LZioMOWSEZTQ5Yy2ulc73w3a75XTnbpdrtW0hqjkTFboF0723Wx33t2PEKIaumCg77UFNwaFJWISkVKQRN_-R-_c6G167qQ4RhXj1T-10T2ozrYuRWamomrJJBWEYSmSKk6oDVjwuncW2i4tH_mLE97sunt1iK5OoDQaSD95surl0YFkIvyOGz2GoFbfvh7b97M13oXgoX1MFiM1taI6aMWk3zxkNdYDNI_2b-8l8GEGIW3ZDfiDME_U-wN1R-NR</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Rudenko, A.</creator><creator>Inhester, L.</creator><creator>Hanasaki, K.</creator><creator>Li, X.</creator><creator>Robatjazi, S. J.</creator><creator>Erk, B.</creator><creator>Boll, R.</creator><creator>Toyota, K.</creator><creator>Hao, Y.</creator><creator>Vendrell, O.</creator><creator>Bomme, C.</creator><creator>Savelyev, E.</creator><creator>Rudek, B.</creator><creator>Foucar, L.</creator><creator>Southworth, S. H.</creator><creator>Lehmann, C. S.</creator><creator>Kraessig, B.</creator><creator>Marchenko, T.</creator><creator>Simon, M.</creator><creator>Ueda, K.</creator><creator>Ferguson, K. R.</creator><creator>Bucher, M.</creator><creator>Gorkhover, T.</creator><creator>Carron, S.</creator><creator>Alonso-Mori, R.</creator><creator>Koglin, J. E.</creator><creator>Correa, J.</creator><creator>Williams, G. J.</creator><creator>Boutet, S.</creator><creator>Young, L.</creator><creator>Bostedt, C.</creator><creator>Son, S.-K.</creator><creator>Santra, R.</creator><creator>Rolles, D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8915-8319</orcidid><orcidid>https://orcid.org/0000-0002-2251-039X</orcidid></search><sort><creationdate>20170601</creationdate><title>Femtosecond response of polyatomic molecules to ultra-intense hard X-rays</title><author>Rudenko, A. ; Inhester, L. ; Hanasaki, K. ; Li, X. ; Robatjazi, S. J. ; Erk, B. ; Boll, R. ; Toyota, K. ; Hao, Y. ; Vendrell, O. ; Bomme, C. ; Savelyev, E. ; Rudek, B. ; Foucar, L. ; Southworth, S. H. ; Lehmann, C. S. ; Kraessig, B. ; Marchenko, T. ; Simon, M. ; Ueda, K. ; Ferguson, K. R. ; Bucher, M. ; Gorkhover, T. ; Carron, S. ; Alonso-Mori, R. ; Koglin, J. E. ; Correa, J. ; Williams, G. J. ; Boutet, S. ; Young, L. ; Bostedt, C. ; Son, S.-K. ; Santra, R. ; Rolles, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-392847f063f4bca2dd6963d08f33bb519a035a446ff1969d0e4e2d58a5e99ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/766/36/1121</topic><topic>639/766/400/1106</topic><topic>Absorption</topic><topic>Atomic structure</topic><topic>Biological materials</topic><topic>Carbon</topic><topic>Charge transfer</topic><topic>Chemical Sciences</topic><topic>Complex systems</topic><topic>Cross-sections</topic><topic>Crystallography</topic><topic>Crystallography - methods</topic><topic>Crystals</topic><topic>Diffraction</topic><topic>Diffraction patterns</topic><topic>Dynamic structural analysis</topic><topic>Dynamical systems</topic><topic>Electrons</topic><topic>Emission</topic><topic>Feasibility</topic><topic>Femtosecond lasers</topic><topic>Free electron lasers</topic><topic>Hard X-rays</topic><topic>Humanities and Social Sciences</topic><topic>Imaging</topic><topic>Iodine</topic><topic>Iodine - chemistry</topic><topic>Ionization</topic><topic>Ionizing radiation</topic><topic>Ions</topic><topic>Irradiation</topic><topic>Kinetics</topic><topic>Lasers</topic><topic>letter</topic><topic>Molecular physics</topic><topic>Molecular structure</topic><topic>multidisciplinary</topic><topic>Nanocrystals</topic><topic>Photons</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Polyatomic molecules</topic><topic>Protein Conformation</topic><topic>Proteins - chemistry</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Science</topic><topic>Soft x rays</topic><topic>Static Electricity</topic><topic>Target recognition</topic><topic>Time Factors</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudenko, A.</creatorcontrib><creatorcontrib>Inhester, L.</creatorcontrib><creatorcontrib>Hanasaki, K.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Robatjazi, S. J.</creatorcontrib><creatorcontrib>Erk, B.</creatorcontrib><creatorcontrib>Boll, R.</creatorcontrib><creatorcontrib>Toyota, K.</creatorcontrib><creatorcontrib>Hao, Y.</creatorcontrib><creatorcontrib>Vendrell, O.</creatorcontrib><creatorcontrib>Bomme, C.</creatorcontrib><creatorcontrib>Savelyev, E.</creatorcontrib><creatorcontrib>Rudek, B.</creatorcontrib><creatorcontrib>Foucar, L.</creatorcontrib><creatorcontrib>Southworth, S. H.</creatorcontrib><creatorcontrib>Lehmann, C. S.</creatorcontrib><creatorcontrib>Kraessig, B.</creatorcontrib><creatorcontrib>Marchenko, T.</creatorcontrib><creatorcontrib>Simon, M.</creatorcontrib><creatorcontrib>Ueda, K.</creatorcontrib><creatorcontrib>Ferguson, K. R.</creatorcontrib><creatorcontrib>Bucher, M.</creatorcontrib><creatorcontrib>Gorkhover, T.</creatorcontrib><creatorcontrib>Carron, S.</creatorcontrib><creatorcontrib>Alonso-Mori, R.</creatorcontrib><creatorcontrib>Koglin, J. E.</creatorcontrib><creatorcontrib>Correa, J.</creatorcontrib><creatorcontrib>Williams, G. J.</creatorcontrib><creatorcontrib>Boutet, S.</creatorcontrib><creatorcontrib>Young, L.</creatorcontrib><creatorcontrib>Bostedt, C.</creatorcontrib><creatorcontrib>Son, S.-K.</creatorcontrib><creatorcontrib>Santra, R.</creatorcontrib><creatorcontrib>Rolles, D.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudenko, A.</au><au>Inhester, L.</au><au>Hanasaki, K.</au><au>Li, X.</au><au>Robatjazi, S. J.</au><au>Erk, B.</au><au>Boll, R.</au><au>Toyota, K.</au><au>Hao, Y.</au><au>Vendrell, O.</au><au>Bomme, C.</au><au>Savelyev, E.</au><au>Rudek, B.</au><au>Foucar, L.</au><au>Southworth, S. H.</au><au>Lehmann, C. S.</au><au>Kraessig, B.</au><au>Marchenko, T.</au><au>Simon, M.</au><au>Ueda, K.</au><au>Ferguson, K. R.</au><au>Bucher, M.</au><au>Gorkhover, T.</au><au>Carron, S.</au><au>Alonso-Mori, R.</au><au>Koglin, J. E.</au><au>Correa, J.</au><au>Williams, G. J.</au><au>Boutet, S.</au><au>Young, L.</au><au>Bostedt, C.</au><au>Son, S.-K.</au><au>Santra, R.</au><au>Rolles, D.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Femtosecond response of polyatomic molecules to ultra-intense hard X-rays</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>546</volume><issue>7656</issue><spage>129</spage><epage>132</epage><pages>129-132</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Upon exposure to ultra-intense, hard X-ray pulses, polyatomic molecules containing one heavy atom reach a much higher degree of ionization than do individual heavy atoms, contrary to previous assumptions.
Ultrafast molecular response to intense X-rays
X-ray free-electron lasers offer many new applications such as the ability to structurally probe fast biological processes. This requires the use of hard and intense X-ray pulses, but the behaviour of matter under such conditions has not been fully explored. Artem Rudenko
et al
. show that when exposing small polyatomic molecules that contain one heavy atom to hard X-ray pulses with ultra-high intensities, the response is qualitatively different from what is seen in experiments carried out under less extreme conditions. The observed ionization of the molecule is considerably enhanced compared to that of an individual heavy atom under the same conditions, owing to ultrafast charge transfer within the molecule that replenishes the electrons removed from the heavy atom, enabling further ionization. Being able to account for this effect will aid further use of X-ray free-electron lasers for studying biological systems.
X-ray free-electron lasers enable the investigation of the structure and dynamics of diverse systems, including atoms, molecules, nanocrystals and single bioparticles, under extreme conditions
1
,
2
,
3
,
4
,
5
,
6
,
7
. Many imaging applications that target biological systems and complex materials use hard X-ray pulses with extremely high peak intensities (exceeding 10
20
watts per square centimetre)
3
,
5
. However, fundamental investigations have focused mainly on the individual response of atoms and small molecules using soft X-rays with much lower intensities
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
. Studies with intense X-ray pulses have shown that irradiated atoms reach a very high degree of ionization, owing to multiphoton absorption
8
,
12
,
13
,
18
, which in a heteronuclear molecular system occurs predominantly locally on a heavy atom (provided that the absorption cross-section of the heavy atom is considerably larger than those of its neighbours) and is followed by efficient redistribution of the induced charge
14
,
15
,
16
,
17
,
19
,
20
. In serial femtosecond crystallography of biological objects—an application of X-ray free-electron lasers that greatly enhances our ability to determine protein structure
2
,
3
—the ionization of heavy atoms increases the local radiation damage that is seen in the diffraction patterns of these objects
21
,
22
and has been suggested as a way of phasing the diffraction data
23
,
24
. On the basis of experiments using either soft or less-intense hard X-rays
14
,
15
,
16
,
17
,
18
,
19
,
25
, it is thought that the induced charge and associated radiation damage of atoms in polyatomic molecules can be inferred from the charge that is induced in an isolated atom under otherwise comparable irradiation conditions. Here we show that the femtosecond response of small polyatomic molecules that contain one heavy atom to ultra-intense (with intensities approaching 10
20
watts per square centimetre), hard (with photon energies of 8.3 kiloelectronvolts) X-ray pulses is qualitatively different: our experimental and modelling results establish that, under these conditions, the ionization of a molecule is considerably enhanced compared to that of an individual heavy atom with the same absorption cross-section. This enhancement is driven by ultrafast charge transfer within the molecule, which refills the core holes that are created in the heavy atom, providing further targets for inner-shell ionization and resulting in the emission of more than 50 electrons during the X-ray pulse. Our results demonstrate that efficient modelling of X-ray-driven processes in complex systems at ultrahigh intensities is feasible.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28569799</pmid><doi>10.1038/nature22373</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8915-8319</orcidid><orcidid>https://orcid.org/0000-0002-2251-039X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2017-06, Vol.546 (7656), p.129-132 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1369420 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/766/36/1121 639/766/400/1106 Absorption Atomic structure Biological materials Carbon Charge transfer Chemical Sciences Complex systems Cross-sections Crystallography Crystallography - methods Crystals Diffraction Diffraction patterns Dynamic structural analysis Dynamical systems Electrons Emission Feasibility Femtosecond lasers Free electron lasers Hard X-rays Humanities and Social Sciences Imaging Iodine Iodine - chemistry Ionization Ionizing radiation Ions Irradiation Kinetics Lasers letter Molecular physics Molecular structure multidisciplinary Nanocrystals Photons Physics Physiological aspects Polyatomic molecules Protein Conformation Proteins - chemistry Radiation Radiation damage Science Soft x rays Static Electricity Target recognition Time Factors X-Rays |
title | Femtosecond response of polyatomic molecules to ultra-intense hard X-rays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Femtosecond%20response%20of%20polyatomic%20molecules%20to%20ultra-intense%20hard%20X-rays&rft.jtitle=Nature%20(London)&rft.au=Rudenko,%20A.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-06-01&rft.volume=546&rft.issue=7656&rft.spage=129&rft.epage=132&rft.pages=129-132&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature22373&rft_dat=%3Cgale_osti_%3EA493824198%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1906107467&rft_id=info:pmid/28569799&rft_galeid=A493824198&rfr_iscdi=true |