Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case

Advancing understanding of deep convection microphysics via mesoscale modeling studies of well-observed case studies requires observation-based aerosol inputs. Here, we derive hygroscopic aerosol size distribution input profiles from ground-based and airborne measurements for six convection case stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2017-05, Vol.17 (9)
Hauptverfasser: Fridlind, Ann M., Xiaowen, Li, Wu, Di, Van Lier-Walqui, Marcus, Ackerman, Andrew S., Tao, Wei-Kuo, McFarquhar, Greg M., Wu, Wei, Dong, Xiquan, Wang, Jingyu, Ryzhkov, Alexander, Zhang, Pengfei, Poellot, Michael R., Neumann, Andrea, Tomlinson, Jason M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Atmospheric chemistry and physics
container_volume 17
creator Fridlind, Ann M.
Xiaowen, Li
Wu, Di
Van Lier-Walqui, Marcus
Ackerman, Andrew S.
Tao, Wei-Kuo
McFarquhar, Greg M.
Wu, Wei
Dong, Xiquan
Wang, Jingyu
Ryzhkov, Alexander
Zhang, Pengfei
Poellot, Michael R.
Neumann, Andrea
Tomlinson, Jason M.
description Advancing understanding of deep convection microphysics via mesoscale modeling studies of well-observed case studies requires observation-based aerosol inputs. Here, we derive hygroscopic aerosol size distribution input profiles from ground-based and airborne measurements for six convection case studies observed during the Midlatitude Continental Convective Cloud Experiment (MC3E) over Oklahoma. We demonstrate use of an input profile in simulations of the only well-observed case study that produced extensive stratiform outflow on 20 May 2011. At well-sampled elevations between -11 and -23 degree C over widespread stratiform rain, ice crystal number concentrations are consistently dominated by a single mode near 400 micrometer in randomly oriented maximum dimension (D[superscript max] ). The ice mass at -23 degree C is primarily in a closely collocated mode, whereas a mass mode near D[superscript max] -1000 micrometer becomes dominant with decreasing elevation to the -11 degree C level, consistent with possible aggregation during sedimentation. However, simulations with and without observation-based aerosol inputs systematically overpredict mass peak D[superscript max] by a factor of 3-5 and underpredict ice number concentration by a factor of 4-10. Previously reported simulations with both two-moment and size-resolved microphysics have shown biases of a similar nature. The observed ice properties are notably similar to those reported from recent tropical measurements. Based on several lines of evidence, we speculate that updraft microphysical pathways determining outflow properties in the 20 May case are similar to a tropical regime, likely associated with warm-temperature ice multiplication that is not well understood or well represented in models.
doi_str_mv 10.5194/acp-17-5947-2017
format Article
fullrecord <record><control><sourceid>nasa_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1368108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20170004662</sourcerecordid><originalsourceid>FETCH-LOGICAL-n488-e638b0220b61192e31dddb02637d3593f704a8638f599ed7daf7638e468fd6f13</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3Dx6C9-jkY5PssaytCi0Krecl3SQ0siZ1sy3479224mlm3nl4YAahWwoPBS3Fo2m2hCpSlEIRBlSdoRGVGojiTJz_91ReoqucPwFYAVSM0PbJdWFv-pAiTh5PXJdyavF7l3xoXcY-dXhR8SmuUty75sgt-50Nw85Eiz-yw2GIwteuPVryQdNvHGaAF-YHL793pm3xPESHK5PdNbrwps3u5q-O0Wo2XVUvZP72_FpN5iQKrYmTXK-BMVhLSkvmOLXWDoHkyvKi5F6BMHqAfFGWziprvBomJ6T2VnrKx-j-pE25D3VuQu-aTZNiHG6oKZeagh6guxMUTTZ17LtcH14HAEJKxn8BuIdijA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case</title><source>DOAJ Directory of Open Access Journals</source><source>NASA Technical Reports Server</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Fridlind, Ann M. ; Xiaowen, Li ; Wu, Di ; Van Lier-Walqui, Marcus ; Ackerman, Andrew S. ; Tao, Wei-Kuo ; McFarquhar, Greg M. ; Wu, Wei ; Dong, Xiquan ; Wang, Jingyu ; Ryzhkov, Alexander ; Zhang, Pengfei ; Poellot, Michael R. ; Neumann, Andrea ; Tomlinson, Jason M.</creator><creatorcontrib>Fridlind, Ann M. ; Xiaowen, Li ; Wu, Di ; Van Lier-Walqui, Marcus ; Ackerman, Andrew S. ; Tao, Wei-Kuo ; McFarquhar, Greg M. ; Wu, Wei ; Dong, Xiquan ; Wang, Jingyu ; Ryzhkov, Alexander ; Zhang, Pengfei ; Poellot, Michael R. ; Neumann, Andrea ; Tomlinson, Jason M. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Advancing understanding of deep convection microphysics via mesoscale modeling studies of well-observed case studies requires observation-based aerosol inputs. Here, we derive hygroscopic aerosol size distribution input profiles from ground-based and airborne measurements for six convection case studies observed during the Midlatitude Continental Convective Cloud Experiment (MC3E) over Oklahoma. We demonstrate use of an input profile in simulations of the only well-observed case study that produced extensive stratiform outflow on 20 May 2011. At well-sampled elevations between -11 and -23 degree C over widespread stratiform rain, ice crystal number concentrations are consistently dominated by a single mode near 400 micrometer in randomly oriented maximum dimension (D[superscript max] ). The ice mass at -23 degree C is primarily in a closely collocated mode, whereas a mass mode near D[superscript max] -1000 micrometer becomes dominant with decreasing elevation to the -11 degree C level, consistent with possible aggregation during sedimentation. However, simulations with and without observation-based aerosol inputs systematically overpredict mass peak D[superscript max] by a factor of 3-5 and underpredict ice number concentration by a factor of 4-10. Previously reported simulations with both two-moment and size-resolved microphysics have shown biases of a similar nature. The observed ice properties are notably similar to those reported from recent tropical measurements. Based on several lines of evidence, we speculate that updraft microphysical pathways determining outflow properties in the 20 May case are similar to a tropical regime, likely associated with warm-temperature ice multiplication that is not well understood or well represented in models.</description><identifier>ISSN: 1680-7316</identifier><identifier>ISSN: 1680-7324</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-17-5947-2017</identifier><language>eng</language><publisher>Goddard Space Flight Center: Copernicus</publisher><subject>ENVIRONMENTAL SCIENCES ; Meteorology And Climatology</subject><ispartof>Atmospheric chemistry and physics, 2017-05, Vol.17 (9)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000243631094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1368108$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fridlind, Ann M.</creatorcontrib><creatorcontrib>Xiaowen, Li</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Van Lier-Walqui, Marcus</creatorcontrib><creatorcontrib>Ackerman, Andrew S.</creatorcontrib><creatorcontrib>Tao, Wei-Kuo</creatorcontrib><creatorcontrib>McFarquhar, Greg M.</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Dong, Xiquan</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Ryzhkov, Alexander</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Poellot, Michael R.</creatorcontrib><creatorcontrib>Neumann, Andrea</creatorcontrib><creatorcontrib>Tomlinson, Jason M.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case</title><title>Atmospheric chemistry and physics</title><description>Advancing understanding of deep convection microphysics via mesoscale modeling studies of well-observed case studies requires observation-based aerosol inputs. Here, we derive hygroscopic aerosol size distribution input profiles from ground-based and airborne measurements for six convection case studies observed during the Midlatitude Continental Convective Cloud Experiment (MC3E) over Oklahoma. We demonstrate use of an input profile in simulations of the only well-observed case study that produced extensive stratiform outflow on 20 May 2011. At well-sampled elevations between -11 and -23 degree C over widespread stratiform rain, ice crystal number concentrations are consistently dominated by a single mode near 400 micrometer in randomly oriented maximum dimension (D[superscript max] ). The ice mass at -23 degree C is primarily in a closely collocated mode, whereas a mass mode near D[superscript max] -1000 micrometer becomes dominant with decreasing elevation to the -11 degree C level, consistent with possible aggregation during sedimentation. However, simulations with and without observation-based aerosol inputs systematically overpredict mass peak D[superscript max] by a factor of 3-5 and underpredict ice number concentration by a factor of 4-10. Previously reported simulations with both two-moment and size-resolved microphysics have shown biases of a similar nature. The observed ice properties are notably similar to those reported from recent tropical measurements. Based on several lines of evidence, we speculate that updraft microphysical pathways determining outflow properties in the 20 May case are similar to a tropical regime, likely associated with warm-temperature ice multiplication that is not well understood or well represented in models.</description><subject>ENVIRONMENTAL SCIENCES</subject><subject>Meteorology And Climatology</subject><issn>1680-7316</issn><issn>1680-7324</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3Dx6C9-jkY5PssaytCi0Krecl3SQ0siZ1sy3479224mlm3nl4YAahWwoPBS3Fo2m2hCpSlEIRBlSdoRGVGojiTJz_91ReoqucPwFYAVSM0PbJdWFv-pAiTh5PXJdyavF7l3xoXcY-dXhR8SmuUty75sgt-50Nw85Eiz-yw2GIwteuPVryQdNvHGaAF-YHL793pm3xPESHK5PdNbrwps3u5q-O0Wo2XVUvZP72_FpN5iQKrYmTXK-BMVhLSkvmOLXWDoHkyvKi5F6BMHqAfFGWziprvBomJ6T2VnrKx-j-pE25D3VuQu-aTZNiHG6oKZeagh6guxMUTTZ17LtcH14HAEJKxn8BuIdijA</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Fridlind, Ann M.</creator><creator>Xiaowen, Li</creator><creator>Wu, Di</creator><creator>Van Lier-Walqui, Marcus</creator><creator>Ackerman, Andrew S.</creator><creator>Tao, Wei-Kuo</creator><creator>McFarquhar, Greg M.</creator><creator>Wu, Wei</creator><creator>Dong, Xiquan</creator><creator>Wang, Jingyu</creator><creator>Ryzhkov, Alexander</creator><creator>Zhang, Pengfei</creator><creator>Poellot, Michael R.</creator><creator>Neumann, Andrea</creator><creator>Tomlinson, Jason M.</creator><general>Copernicus</general><general>European Geosciences Union</general><scope>CYE</scope><scope>CYI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000243631094</orcidid></search><sort><creationdate>20170515</creationdate><title>Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case</title><author>Fridlind, Ann M. ; Xiaowen, Li ; Wu, Di ; Van Lier-Walqui, Marcus ; Ackerman, Andrew S. ; Tao, Wei-Kuo ; McFarquhar, Greg M. ; Wu, Wei ; Dong, Xiquan ; Wang, Jingyu ; Ryzhkov, Alexander ; Zhang, Pengfei ; Poellot, Michael R. ; Neumann, Andrea ; Tomlinson, Jason M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-n488-e638b0220b61192e31dddb02637d3593f704a8638f599ed7daf7638e468fd6f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ENVIRONMENTAL SCIENCES</topic><topic>Meteorology And Climatology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fridlind, Ann M.</creatorcontrib><creatorcontrib>Xiaowen, Li</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Van Lier-Walqui, Marcus</creatorcontrib><creatorcontrib>Ackerman, Andrew S.</creatorcontrib><creatorcontrib>Tao, Wei-Kuo</creatorcontrib><creatorcontrib>McFarquhar, Greg M.</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Dong, Xiquan</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Ryzhkov, Alexander</creatorcontrib><creatorcontrib>Zhang, Pengfei</creatorcontrib><creatorcontrib>Poellot, Michael R.</creatorcontrib><creatorcontrib>Neumann, Andrea</creatorcontrib><creatorcontrib>Tomlinson, Jason M.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fridlind, Ann M.</au><au>Xiaowen, Li</au><au>Wu, Di</au><au>Van Lier-Walqui, Marcus</au><au>Ackerman, Andrew S.</au><au>Tao, Wei-Kuo</au><au>McFarquhar, Greg M.</au><au>Wu, Wei</au><au>Dong, Xiquan</au><au>Wang, Jingyu</au><au>Ryzhkov, Alexander</au><au>Zhang, Pengfei</au><au>Poellot, Michael R.</au><au>Neumann, Andrea</au><au>Tomlinson, Jason M.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2017-05-15</date><risdate>2017</risdate><volume>17</volume><issue>9</issue><issn>1680-7316</issn><issn>1680-7324</issn><eissn>1680-7324</eissn><abstract>Advancing understanding of deep convection microphysics via mesoscale modeling studies of well-observed case studies requires observation-based aerosol inputs. Here, we derive hygroscopic aerosol size distribution input profiles from ground-based and airborne measurements for six convection case studies observed during the Midlatitude Continental Convective Cloud Experiment (MC3E) over Oklahoma. We demonstrate use of an input profile in simulations of the only well-observed case study that produced extensive stratiform outflow on 20 May 2011. At well-sampled elevations between -11 and -23 degree C over widespread stratiform rain, ice crystal number concentrations are consistently dominated by a single mode near 400 micrometer in randomly oriented maximum dimension (D[superscript max] ). The ice mass at -23 degree C is primarily in a closely collocated mode, whereas a mass mode near D[superscript max] -1000 micrometer becomes dominant with decreasing elevation to the -11 degree C level, consistent with possible aggregation during sedimentation. However, simulations with and without observation-based aerosol inputs systematically overpredict mass peak D[superscript max] by a factor of 3-5 and underpredict ice number concentration by a factor of 4-10. Previously reported simulations with both two-moment and size-resolved microphysics have shown biases of a similar nature. The observed ice properties are notably similar to those reported from recent tropical measurements. Based on several lines of evidence, we speculate that updraft microphysical pathways determining outflow properties in the 20 May case are similar to a tropical regime, likely associated with warm-temperature ice multiplication that is not well understood or well represented in models.</abstract><cop>Goddard Space Flight Center</cop><pub>Copernicus</pub><doi>10.5194/acp-17-5947-2017</doi><orcidid>https://orcid.org/0000000243631094</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7316
ispartof Atmospheric chemistry and physics, 2017-05, Vol.17 (9)
issn 1680-7316
1680-7324
1680-7324
language eng
recordid cdi_osti_scitechconnect_1368108
source DOAJ Directory of Open Access Journals; NASA Technical Reports Server; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects ENVIRONMENTAL SCIENCES
Meteorology And Climatology
title Derivation of Aerosol Profiles for MC3E Convection Studies and Use in Simulations of the 20 May Squall Line Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20Aerosol%20Profiles%20for%20MC3E%20Convection%20Studies%20and%20Use%20in%20Simulations%20of%20the%2020%20May%20Squall%20Line%20Case&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Fridlind,%20Ann%20M.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2017-05-15&rft.volume=17&rft.issue=9&rft.issn=1680-7316&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-17-5947-2017&rft_dat=%3Cnasa_osti_%3E20170004662%3C/nasa_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true