An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys
•This work simulates delamination failure in Al–Li alloys.•Delamination cracking occurs on soft/stiff grain boundaries.•The mechanics of these interfaces directly cause elevated void growth.•Material inhomogeneities on grain boundaries are not required to develop void growth. This work describes a m...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2015-01, Vol.133 (C), p.70-84 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | C |
container_start_page | 70 |
container_title | Engineering fracture mechanics |
container_volume | 133 |
creator | Messner, M.C. Beaudoin, A.J. Dodds, R.H. |
description | •This work simulates delamination failure in Al–Li alloys.•Delamination cracking occurs on soft/stiff grain boundaries.•The mechanics of these interfaces directly cause elevated void growth.•Material inhomogeneities on grain boundaries are not required to develop void growth.
This work describes a mechanism for the initiation of delamination cracks in Al–Li alloys based on the soft/stiff character of adjacent grains. Small-scale-yielding, crystal plasticity simulations of divider grain configurations (L-T) reveal an elevated mean stress on grain boundaries. This mean stress increase drives a sharp localization of the Rice-Tracey parameter to the grain boundaries – elevation of the RT parameter indicates favorable conditions for void growth and triggering of delamination cracking, in agreement with the fractography of Ritchie and co-workers. Our simulation results and available experimental evidence indicate delamination initiates typically between soft/stiff grain pairs, often Bs (Bunge-convention Euler angles ϕ1=131°, Φ=83°,ϕ2=307°) or S (ϕ1=233°, Φ=151°,ϕ2=105°) orientations. The crystal plasticity results and a simple model of a soft/stiff material interface show that mean stress accumulation is a consequence of the mechanics of such an interface, and not necessarily tied to material inhomogeneities near the GBs (such as precipitate free zones). |
doi_str_mv | 10.1016/j.engfracmech.2014.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1367918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794414003658</els_id><sourcerecordid>1685805955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-e210b337ac6b6a8f37cc96631a1fcce4e9e1eb00f31c3cc020a45582fb3537ea3</originalsourceid><addsrcrecordid>eNqNkT1u3DAQhQkjAbJxcgc5VZqVZ0T9lsbC-QEMuLFrgpod2lxI5JqkDGyXO-SGOUkobIqUrjggvvfmDZ4QVwglArbXh5LdkwmaZqbnsgKsS8QSQF6IDfad3HYSm3diA4B5Hur6g_gY4wEAuraHjXi6cYV1iYPRxAX5-aiTHe1k0-maX5Y8jMEuc7Haa2fjXBgfij1PerYuo94V6_a0BM4-hZ6W_L_Mf379zhbPq1JPkz_FT-K90VPkz__eS_H47fZh92N7d__95-7mbku1rNKWK4RRyk5TO7a6N7IjGtpWokZDxDUPjDwCGIkkiaACXTdNX5lRNrJjLS_Fl7Ovj8mqSDbl4OSdY0oKZdsN2Gfo6xk6Bv-ycExqtpF4mrRjv0SFbd_00AxNk9HhjFLwMQY26hjsrMNJIai1AXVQ_zWg1gYUosoNZO3urOV88KvlsOZhR7y3YY2z9_YNLn8BL7GYrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685805955</pqid></control><display><type>article</type><title>An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Messner, M.C. ; Beaudoin, A.J. ; Dodds, R.H.</creator><creatorcontrib>Messner, M.C. ; Beaudoin, A.J. ; Dodds, R.H.</creatorcontrib><description>•This work simulates delamination failure in Al–Li alloys.•Delamination cracking occurs on soft/stiff grain boundaries.•The mechanics of these interfaces directly cause elevated void growth.•Material inhomogeneities on grain boundaries are not required to develop void growth.
This work describes a mechanism for the initiation of delamination cracks in Al–Li alloys based on the soft/stiff character of adjacent grains. Small-scale-yielding, crystal plasticity simulations of divider grain configurations (L-T) reveal an elevated mean stress on grain boundaries. This mean stress increase drives a sharp localization of the Rice-Tracey parameter to the grain boundaries – elevation of the RT parameter indicates favorable conditions for void growth and triggering of delamination cracking, in agreement with the fractography of Ritchie and co-workers. Our simulation results and available experimental evidence indicate delamination initiates typically between soft/stiff grain pairs, often Bs (Bunge-convention Euler angles ϕ1=131°, Φ=83°,ϕ2=307°) or S (ϕ1=233°, Φ=151°,ϕ2=105°) orientations. The crystal plasticity results and a simple model of a soft/stiff material interface show that mean stress accumulation is a consequence of the mechanics of such an interface, and not necessarily tied to material inhomogeneities near the GBs (such as precipitate free zones).</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2014.11.003</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Aerospace vehicles ; Aluminum alloys ; Crystals ; Delaminating ; Delamination ; Fracture mechanics ; Grain boundaries ; Grains ; Intergranular fracture ; Mathematical models ; Micromechanics ; Stresses</subject><ispartof>Engineering fracture mechanics, 2015-01, Vol.133 (C), p.70-84</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-e210b337ac6b6a8f37cc96631a1fcce4e9e1eb00f31c3cc020a45582fb3537ea3</citedby><cites>FETCH-LOGICAL-c432t-e210b337ac6b6a8f37cc96631a1fcce4e9e1eb00f31c3cc020a45582fb3537ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2014.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1367918$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Messner, M.C.</creatorcontrib><creatorcontrib>Beaudoin, A.J.</creatorcontrib><creatorcontrib>Dodds, R.H.</creatorcontrib><title>An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys</title><title>Engineering fracture mechanics</title><description>•This work simulates delamination failure in Al–Li alloys.•Delamination cracking occurs on soft/stiff grain boundaries.•The mechanics of these interfaces directly cause elevated void growth.•Material inhomogeneities on grain boundaries are not required to develop void growth.
This work describes a mechanism for the initiation of delamination cracks in Al–Li alloys based on the soft/stiff character of adjacent grains. Small-scale-yielding, crystal plasticity simulations of divider grain configurations (L-T) reveal an elevated mean stress on grain boundaries. This mean stress increase drives a sharp localization of the Rice-Tracey parameter to the grain boundaries – elevation of the RT parameter indicates favorable conditions for void growth and triggering of delamination cracking, in agreement with the fractography of Ritchie and co-workers. Our simulation results and available experimental evidence indicate delamination initiates typically between soft/stiff grain pairs, often Bs (Bunge-convention Euler angles ϕ1=131°, Φ=83°,ϕ2=307°) or S (ϕ1=233°, Φ=151°,ϕ2=105°) orientations. The crystal plasticity results and a simple model of a soft/stiff material interface show that mean stress accumulation is a consequence of the mechanics of such an interface, and not necessarily tied to material inhomogeneities near the GBs (such as precipitate free zones).</description><subject>Aerospace vehicles</subject><subject>Aluminum alloys</subject><subject>Crystals</subject><subject>Delaminating</subject><subject>Delamination</subject><subject>Fracture mechanics</subject><subject>Grain boundaries</subject><subject>Grains</subject><subject>Intergranular fracture</subject><subject>Mathematical models</subject><subject>Micromechanics</subject><subject>Stresses</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkT1u3DAQhQkjAbJxcgc5VZqVZ0T9lsbC-QEMuLFrgpod2lxI5JqkDGyXO-SGOUkobIqUrjggvvfmDZ4QVwglArbXh5LdkwmaZqbnsgKsS8QSQF6IDfad3HYSm3diA4B5Hur6g_gY4wEAuraHjXi6cYV1iYPRxAX5-aiTHe1k0-maX5Y8jMEuc7Haa2fjXBgfij1PerYuo94V6_a0BM4-hZ6W_L_Mf379zhbPq1JPkz_FT-K90VPkz__eS_H47fZh92N7d__95-7mbku1rNKWK4RRyk5TO7a6N7IjGtpWokZDxDUPjDwCGIkkiaACXTdNX5lRNrJjLS_Fl7Ovj8mqSDbl4OSdY0oKZdsN2Gfo6xk6Bv-ycExqtpF4mrRjv0SFbd_00AxNk9HhjFLwMQY26hjsrMNJIai1AXVQ_zWg1gYUosoNZO3urOV88KvlsOZhR7y3YY2z9_YNLn8BL7GYrQ</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Messner, M.C.</creator><creator>Beaudoin, A.J.</creator><creator>Dodds, R.H.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>201501</creationdate><title>An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys</title><author>Messner, M.C. ; Beaudoin, A.J. ; Dodds, R.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-e210b337ac6b6a8f37cc96631a1fcce4e9e1eb00f31c3cc020a45582fb3537ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerospace vehicles</topic><topic>Aluminum alloys</topic><topic>Crystals</topic><topic>Delaminating</topic><topic>Delamination</topic><topic>Fracture mechanics</topic><topic>Grain boundaries</topic><topic>Grains</topic><topic>Intergranular fracture</topic><topic>Mathematical models</topic><topic>Micromechanics</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Messner, M.C.</creatorcontrib><creatorcontrib>Beaudoin, A.J.</creatorcontrib><creatorcontrib>Dodds, R.H.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Messner, M.C.</au><au>Beaudoin, A.J.</au><au>Dodds, R.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2015-01</date><risdate>2015</risdate><volume>133</volume><issue>C</issue><spage>70</spage><epage>84</epage><pages>70-84</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•This work simulates delamination failure in Al–Li alloys.•Delamination cracking occurs on soft/stiff grain boundaries.•The mechanics of these interfaces directly cause elevated void growth.•Material inhomogeneities on grain boundaries are not required to develop void growth.
This work describes a mechanism for the initiation of delamination cracks in Al–Li alloys based on the soft/stiff character of adjacent grains. Small-scale-yielding, crystal plasticity simulations of divider grain configurations (L-T) reveal an elevated mean stress on grain boundaries. This mean stress increase drives a sharp localization of the Rice-Tracey parameter to the grain boundaries – elevation of the RT parameter indicates favorable conditions for void growth and triggering of delamination cracking, in agreement with the fractography of Ritchie and co-workers. Our simulation results and available experimental evidence indicate delamination initiates typically between soft/stiff grain pairs, often Bs (Bunge-convention Euler angles ϕ1=131°, Φ=83°,ϕ2=307°) or S (ϕ1=233°, Φ=151°,ϕ2=105°) orientations. The crystal plasticity results and a simple model of a soft/stiff material interface show that mean stress accumulation is a consequence of the mechanics of such an interface, and not necessarily tied to material inhomogeneities near the GBs (such as precipitate free zones).</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2014.11.003</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 2015-01, Vol.133 (C), p.70-84 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_osti_scitechconnect_1367918 |
source | Elsevier ScienceDirect Journals |
subjects | Aerospace vehicles Aluminum alloys Crystals Delaminating Delamination Fracture mechanics Grain boundaries Grains Intergranular fracture Mathematical models Micromechanics Stresses |
title | An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A13%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interface%20compatibility/equilibrium%20mechanism%20for%20delamination%20fracture%20in%20aluminum%E2%80%93lithium%20alloys&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Messner,%20M.C.&rft.date=2015-01&rft.volume=133&rft.issue=C&rft.spage=70&rft.epage=84&rft.pages=70-84&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2014.11.003&rft_dat=%3Cproquest_osti_%3E1685805955%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685805955&rft_id=info:pmid/&rft_els_id=S0013794414003658&rfr_iscdi=true |