Symmetry boundary condition in dissipative particle dynamics
Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one qua...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2015-07, Vol.292 (C), p.287-299 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | C |
container_start_page | 287 |
container_title | Journal of computational physics |
container_volume | 292 |
creator | Pal, Souvik Lan, Chuanjin Li, Zhen Hirleman, E. Daniel Ma, Yanbao |
description | Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time. |
doi_str_mv | 10.1016/j.jcp.2015.03.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1367754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999115001722</els_id><sourcerecordid>1709746899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG_Fk5fWSds0DXqRxX-w4EE9hzRJMWWb1CS7sN_elHr2NDPw3vDeD6FrDAUG3NwNxSCnogRMCqgKKMkJWmFgkJcUN6doBVDinDGGz9FFCAMAtKRuV-jh4ziOOvpj1rm9VSIt0lllonE2MzZTJgQziWgOOpuEj0budKaOVoxGhkt01otd0Fd_c42-np8-N6_59v3lbfO4zWUNEHPRKKE71iqi2g43hJCe9ZQQ6Kp0UkpbktJVhEilZV1XHVUNVqqUqgTAoKo1uln-uhAND9JELb9TTKtl5LhKL0idRLeLaPLuZ69D5KMJUu92wmq3DxxTYLRuWsaSFC9S6V0IXvd88mZM3TkGPuPkA084-YyTQ8UTzuS5Xzw6FT0Y7ecc2kqtjJ9jKGf-cf8CJ1x8zQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709746899</pqid></control><display><type>article</type><title>Symmetry boundary condition in dissipative particle dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pal, Souvik ; Lan, Chuanjin ; Li, Zhen ; Hirleman, E. Daniel ; Ma, Yanbao</creator><creatorcontrib>Pal, Souvik ; Lan, Chuanjin ; Li, Zhen ; Hirleman, E. Daniel ; Ma, Yanbao</creatorcontrib><description>Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.03.025</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Boundary condition ; Boundary conditions ; Computation ; Computer simulation ; Dissipation ; Dissipative particle dynamics ; Dynamical systems ; Dynamics ; Mathematical models ; Mesoscale ; Symmetry</subject><ispartof>Journal of computational physics, 2015-07, Vol.292 (C), p.287-299</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</citedby><cites>FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</cites><orcidid>0000-0001-9721-3333 ; 0000-0002-0936-6928 ; 0000000197213333 ; 0000000209366928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2015.03.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1367754$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pal, Souvik</creatorcontrib><creatorcontrib>Lan, Chuanjin</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Hirleman, E. Daniel</creatorcontrib><creatorcontrib>Ma, Yanbao</creatorcontrib><title>Symmetry boundary condition in dissipative particle dynamics</title><title>Journal of computational physics</title><description>Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.</description><subject>Boundary condition</subject><subject>Boundary conditions</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Dissipation</subject><subject>Dissipative particle dynamics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical models</subject><subject>Mesoscale</subject><subject>Symmetry</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG_Fk5fWSds0DXqRxX-w4EE9hzRJMWWb1CS7sN_elHr2NDPw3vDeD6FrDAUG3NwNxSCnogRMCqgKKMkJWmFgkJcUN6doBVDinDGGz9FFCAMAtKRuV-jh4ziOOvpj1rm9VSIt0lllonE2MzZTJgQziWgOOpuEj0budKaOVoxGhkt01otd0Fd_c42-np8-N6_59v3lbfO4zWUNEHPRKKE71iqi2g43hJCe9ZQQ6Kp0UkpbktJVhEilZV1XHVUNVqqUqgTAoKo1uln-uhAND9JELb9TTKtl5LhKL0idRLeLaPLuZ69D5KMJUu92wmq3DxxTYLRuWsaSFC9S6V0IXvd88mZM3TkGPuPkA084-YyTQ8UTzuS5Xzw6FT0Y7ecc2kqtjJ9jKGf-cf8CJ1x8zQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Pal, Souvik</creator><creator>Lan, Chuanjin</creator><creator>Li, Zhen</creator><creator>Hirleman, E. Daniel</creator><creator>Ma, Yanbao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9721-3333</orcidid><orcidid>https://orcid.org/0000-0002-0936-6928</orcidid><orcidid>https://orcid.org/0000000197213333</orcidid><orcidid>https://orcid.org/0000000209366928</orcidid></search><sort><creationdate>20150701</creationdate><title>Symmetry boundary condition in dissipative particle dynamics</title><author>Pal, Souvik ; Lan, Chuanjin ; Li, Zhen ; Hirleman, E. Daniel ; Ma, Yanbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary condition</topic><topic>Boundary conditions</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Dissipation</topic><topic>Dissipative particle dynamics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical models</topic><topic>Mesoscale</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Souvik</creatorcontrib><creatorcontrib>Lan, Chuanjin</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Hirleman, E. Daniel</creatorcontrib><creatorcontrib>Ma, Yanbao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Souvik</au><au>Lan, Chuanjin</au><au>Li, Zhen</au><au>Hirleman, E. Daniel</au><au>Ma, Yanbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry boundary condition in dissipative particle dynamics</atitle><jtitle>Journal of computational physics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>292</volume><issue>C</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.03.025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9721-3333</orcidid><orcidid>https://orcid.org/0000-0002-0936-6928</orcidid><orcidid>https://orcid.org/0000000197213333</orcidid><orcidid>https://orcid.org/0000000209366928</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2015-07, Vol.292 (C), p.287-299 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1367754 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boundary condition Boundary conditions Computation Computer simulation Dissipation Dissipative particle dynamics Dynamical systems Dynamics Mathematical models Mesoscale Symmetry |
title | Symmetry boundary condition in dissipative particle dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20boundary%20condition%20in%20dissipative%20particle%20dynamics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Pal,%20Souvik&rft.date=2015-07-01&rft.volume=292&rft.issue=C&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.03.025&rft_dat=%3Cproquest_osti_%3E1709746899%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709746899&rft_id=info:pmid/&rft_els_id=S0021999115001722&rfr_iscdi=true |