Symmetry boundary condition in dissipative particle dynamics

Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-07, Vol.292 (C), p.287-299
Hauptverfasser: Pal, Souvik, Lan, Chuanjin, Li, Zhen, Hirleman, E. Daniel, Ma, Yanbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue C
container_start_page 287
container_title Journal of computational physics
container_volume 292
creator Pal, Souvik
Lan, Chuanjin
Li, Zhen
Hirleman, E. Daniel
Ma, Yanbao
description Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.
doi_str_mv 10.1016/j.jcp.2015.03.025
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1367754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999115001722</els_id><sourcerecordid>1709746899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG_Fk5fWSds0DXqRxX-w4EE9hzRJMWWb1CS7sN_elHr2NDPw3vDeD6FrDAUG3NwNxSCnogRMCqgKKMkJWmFgkJcUN6doBVDinDGGz9FFCAMAtKRuV-jh4ziOOvpj1rm9VSIt0lllonE2MzZTJgQziWgOOpuEj0budKaOVoxGhkt01otd0Fd_c42-np8-N6_59v3lbfO4zWUNEHPRKKE71iqi2g43hJCe9ZQQ6Kp0UkpbktJVhEilZV1XHVUNVqqUqgTAoKo1uln-uhAND9JELb9TTKtl5LhKL0idRLeLaPLuZ69D5KMJUu92wmq3DxxTYLRuWsaSFC9S6V0IXvd88mZM3TkGPuPkA084-YyTQ8UTzuS5Xzw6FT0Y7ecc2kqtjJ9jKGf-cf8CJ1x8zQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709746899</pqid></control><display><type>article</type><title>Symmetry boundary condition in dissipative particle dynamics</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pal, Souvik ; Lan, Chuanjin ; Li, Zhen ; Hirleman, E. Daniel ; Ma, Yanbao</creator><creatorcontrib>Pal, Souvik ; Lan, Chuanjin ; Li, Zhen ; Hirleman, E. Daniel ; Ma, Yanbao</creatorcontrib><description>Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2015.03.025</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Boundary condition ; Boundary conditions ; Computation ; Computer simulation ; Dissipation ; Dissipative particle dynamics ; Dynamical systems ; Dynamics ; Mathematical models ; Mesoscale ; Symmetry</subject><ispartof>Journal of computational physics, 2015-07, Vol.292 (C), p.287-299</ispartof><rights>2015 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</citedby><cites>FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</cites><orcidid>0000-0001-9721-3333 ; 0000-0002-0936-6928 ; 0000000197213333 ; 0000000209366928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2015.03.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1367754$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pal, Souvik</creatorcontrib><creatorcontrib>Lan, Chuanjin</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Hirleman, E. Daniel</creatorcontrib><creatorcontrib>Ma, Yanbao</creatorcontrib><title>Symmetry boundary condition in dissipative particle dynamics</title><title>Journal of computational physics</title><description>Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.</description><subject>Boundary condition</subject><subject>Boundary conditions</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Dissipation</subject><subject>Dissipative particle dynamics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical models</subject><subject>Mesoscale</subject><subject>Symmetry</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG_Fk5fWSds0DXqRxX-w4EE9hzRJMWWb1CS7sN_elHr2NDPw3vDeD6FrDAUG3NwNxSCnogRMCqgKKMkJWmFgkJcUN6doBVDinDGGz9FFCAMAtKRuV-jh4ziOOvpj1rm9VSIt0lllonE2MzZTJgQziWgOOpuEj0budKaOVoxGhkt01otd0Fd_c42-np8-N6_59v3lbfO4zWUNEHPRKKE71iqi2g43hJCe9ZQQ6Kp0UkpbktJVhEilZV1XHVUNVqqUqgTAoKo1uln-uhAND9JELb9TTKtl5LhKL0idRLeLaPLuZ69D5KMJUu92wmq3DxxTYLRuWsaSFC9S6V0IXvd88mZM3TkGPuPkA084-YyTQ8UTzuS5Xzw6FT0Y7ecc2kqtjJ9jKGf-cf8CJ1x8zQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Pal, Souvik</creator><creator>Lan, Chuanjin</creator><creator>Li, Zhen</creator><creator>Hirleman, E. Daniel</creator><creator>Ma, Yanbao</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9721-3333</orcidid><orcidid>https://orcid.org/0000-0002-0936-6928</orcidid><orcidid>https://orcid.org/0000000197213333</orcidid><orcidid>https://orcid.org/0000000209366928</orcidid></search><sort><creationdate>20150701</creationdate><title>Symmetry boundary condition in dissipative particle dynamics</title><author>Pal, Souvik ; Lan, Chuanjin ; Li, Zhen ; Hirleman, E. Daniel ; Ma, Yanbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-a6daeb98d5d8b16555f9f7550b3b1677785021355cdec443b7d61dd2cd20010d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundary condition</topic><topic>Boundary conditions</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Dissipation</topic><topic>Dissipative particle dynamics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical models</topic><topic>Mesoscale</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pal, Souvik</creatorcontrib><creatorcontrib>Lan, Chuanjin</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Hirleman, E. Daniel</creatorcontrib><creatorcontrib>Ma, Yanbao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pal, Souvik</au><au>Lan, Chuanjin</au><au>Li, Zhen</au><au>Hirleman, E. Daniel</au><au>Ma, Yanbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry boundary condition in dissipative particle dynamics</atitle><jtitle>Journal of computational physics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>292</volume><issue>C</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2015.03.025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9721-3333</orcidid><orcidid>https://orcid.org/0000-0002-0936-6928</orcidid><orcidid>https://orcid.org/0000000197213333</orcidid><orcidid>https://orcid.org/0000000209366928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-07, Vol.292 (C), p.287-299
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1367754
source Elsevier ScienceDirect Journals Complete
subjects Boundary condition
Boundary conditions
Computation
Computer simulation
Dissipation
Dissipative particle dynamics
Dynamical systems
Dynamics
Mathematical models
Mesoscale
Symmetry
title Symmetry boundary condition in dissipative particle dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20boundary%20condition%20in%20dissipative%20particle%20dynamics&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Pal,%20Souvik&rft.date=2015-07-01&rft.volume=292&rft.issue=C&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2015.03.025&rft_dat=%3Cproquest_osti_%3E1709746899%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709746899&rft_id=info:pmid/&rft_els_id=S0021999115001722&rfr_iscdi=true