Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys

Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanics and physics of solids 2017-05, Vol.102 (C), p.46-66
Hauptverfasser: Paranjape, Harshad M., Paul, Partha P., Sharma, Hemant, Kenesei, Peter, Park, Jun-Sang, Duerig, T.W., Brinson, L. Catherine, Stebner, Aaron P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue C
container_start_page 46
container_title Journal of the mechanics and physics of solids
container_volume 102
creator Paranjape, Harshad M.
Paul, Partha P.
Sharma, Hemant
Kenesei, Peter
Park, Jun-Sang
Duerig, T.W.
Brinson, L. Catherine
Stebner, Aaron P.
description Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forces for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response “shakes down”. Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. This intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.
doi_str_mv 10.1016/j.jmps.2017.02.007
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1365399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002250961630881X</els_id><sourcerecordid>1938555905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-c2e1c9d467dcc2042ae6dac321a69682eb4a367585d87e8f0d13911693529b2a3</originalsourceid><addsrcrecordid>eNp9UU2r1TAQDaLg9ekfcBV0a-skuUkbcCMPPx48cKPrkJdO303pTWqSCv07_lJTKi5dDTOcc-bMHEJeM2gZMPV-aqfrklsOrGuBtwDdE3JifSeac9fzp-QEwHkjQavn5EXOEwBI6NiJ_L4L47xicJhpHOljsmGdbaIuhlyS9aFkasNA85pG65DiOKKrsxhouSC9YMEUHzGgL9sugLPNxbt3lbBg-tftEsvR0IR5qerHwiXOm0tbLnaefUCaL3ZBesVrTButs7jll-TZaOeMr_7WG_Lj86fvt1-b-29f7m4_3jdOaF0ax5E5PZxVNzjH4cwtqsE6wZlVWvUcH85WqE72cug77EcYmNCMKS0k1w_cihvy5tCN1abJzhd0l_qHUA82TChZ11TQ2wO0pPhzxVzMFNcUqi_DtOillBpkRfED5VLMOeFoluSvNm2GgdkDM5PZAzN7YAa4qYFV0oeDhPXIXx7T7mFPZvBptzBE_z_6H-2sor0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1938555905</pqid></control><display><type>article</type><title>Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Paranjape, Harshad M. ; Paul, Partha P. ; Sharma, Hemant ; Kenesei, Peter ; Park, Jun-Sang ; Duerig, T.W. ; Brinson, L. Catherine ; Stebner, Aaron P.</creator><creatorcontrib>Paranjape, Harshad M. ; Paul, Partha P. ; Sharma, Hemant ; Kenesei, Peter ; Park, Jun-Sang ; Duerig, T.W. ; Brinson, L. Catherine ; Stebner, Aaron P. ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forces for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response “shakes down”. Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. This intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.</description><identifier>ISSN: 0022-5096</identifier><identifier>EISSN: 1873-4782</identifier><identifier>DOI: 10.1016/j.jmps.2017.02.007</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Alloy development ; Alloys ; Austenite ; Axial stress ; Computer simulation ; Crystal structure ; Elastic deformation ; Elasticity ; Energy measurement ; Finite element method ; finite elements ; Finite elements (C) ; Grain boundaries ; Heterogeneity ; Intermetallic compounds ; Martensitic transformations ; MATERIALS SCIENCE ; Mathematical analysis ; Microstructure ; microstructures ; Microstructures (A) ; Nickel base alloys ; Nickel compounds ; Nickel titanides ; phase transformation ; Phase transformation (A) ; Phase transitions ; Plastic deformation ; polycrystalline material ; Polycrystalline material (B) ; Position measurement ; Shape memory alloys ; Simulation ; Strain ; Stress analysis ; Studies ; Titanium compounds ; X-ray diffraction</subject><ispartof>Journal of the mechanics and physics of solids, 2017-05, Vol.102 (C), p.46-66</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-c2e1c9d467dcc2042ae6dac321a69682eb4a367585d87e8f0d13911693529b2a3</citedby><cites>FETCH-LOGICAL-c399t-c2e1c9d467dcc2042ae6dac321a69682eb4a367585d87e8f0d13911693529b2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmps.2017.02.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1365399$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paranjape, Harshad M.</creatorcontrib><creatorcontrib>Paul, Partha P.</creatorcontrib><creatorcontrib>Sharma, Hemant</creatorcontrib><creatorcontrib>Kenesei, Peter</creatorcontrib><creatorcontrib>Park, Jun-Sang</creatorcontrib><creatorcontrib>Duerig, T.W.</creatorcontrib><creatorcontrib>Brinson, L. Catherine</creatorcontrib><creatorcontrib>Stebner, Aaron P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys</title><title>Journal of the mechanics and physics of solids</title><description>Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forces for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response “shakes down”. Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. This intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.</description><subject>Alloy development</subject><subject>Alloys</subject><subject>Austenite</subject><subject>Axial stress</subject><subject>Computer simulation</subject><subject>Crystal structure</subject><subject>Elastic deformation</subject><subject>Elasticity</subject><subject>Energy measurement</subject><subject>Finite element method</subject><subject>finite elements</subject><subject>Finite elements (C)</subject><subject>Grain boundaries</subject><subject>Heterogeneity</subject><subject>Intermetallic compounds</subject><subject>Martensitic transformations</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Microstructure</subject><subject>microstructures</subject><subject>Microstructures (A)</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Nickel titanides</subject><subject>phase transformation</subject><subject>Phase transformation (A)</subject><subject>Phase transitions</subject><subject>Plastic deformation</subject><subject>polycrystalline material</subject><subject>Polycrystalline material (B)</subject><subject>Position measurement</subject><subject>Shape memory alloys</subject><subject>Simulation</subject><subject>Strain</subject><subject>Stress analysis</subject><subject>Studies</subject><subject>Titanium compounds</subject><subject>X-ray diffraction</subject><issn>0022-5096</issn><issn>1873-4782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UU2r1TAQDaLg9ekfcBV0a-skuUkbcCMPPx48cKPrkJdO303pTWqSCv07_lJTKi5dDTOcc-bMHEJeM2gZMPV-aqfrklsOrGuBtwDdE3JifSeac9fzp-QEwHkjQavn5EXOEwBI6NiJ_L4L47xicJhpHOljsmGdbaIuhlyS9aFkasNA85pG65DiOKKrsxhouSC9YMEUHzGgL9sugLPNxbt3lbBg-tftEsvR0IR5qerHwiXOm0tbLnaefUCaL3ZBesVrTButs7jll-TZaOeMr_7WG_Lj86fvt1-b-29f7m4_3jdOaF0ax5E5PZxVNzjH4cwtqsE6wZlVWvUcH85WqE72cug77EcYmNCMKS0k1w_cihvy5tCN1abJzhd0l_qHUA82TChZ11TQ2wO0pPhzxVzMFNcUqi_DtOillBpkRfED5VLMOeFoluSvNm2GgdkDM5PZAzN7YAa4qYFV0oeDhPXIXx7T7mFPZvBptzBE_z_6H-2sor0</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Paranjape, Harshad M.</creator><creator>Paul, Partha P.</creator><creator>Sharma, Hemant</creator><creator>Kenesei, Peter</creator><creator>Park, Jun-Sang</creator><creator>Duerig, T.W.</creator><creator>Brinson, L. Catherine</creator><creator>Stebner, Aaron P.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170501</creationdate><title>Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys</title><author>Paranjape, Harshad M. ; Paul, Partha P. ; Sharma, Hemant ; Kenesei, Peter ; Park, Jun-Sang ; Duerig, T.W. ; Brinson, L. Catherine ; Stebner, Aaron P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-c2e1c9d467dcc2042ae6dac321a69682eb4a367585d87e8f0d13911693529b2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloy development</topic><topic>Alloys</topic><topic>Austenite</topic><topic>Axial stress</topic><topic>Computer simulation</topic><topic>Crystal structure</topic><topic>Elastic deformation</topic><topic>Elasticity</topic><topic>Energy measurement</topic><topic>Finite element method</topic><topic>finite elements</topic><topic>Finite elements (C)</topic><topic>Grain boundaries</topic><topic>Heterogeneity</topic><topic>Intermetallic compounds</topic><topic>Martensitic transformations</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Microstructure</topic><topic>microstructures</topic><topic>Microstructures (A)</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Nickel titanides</topic><topic>phase transformation</topic><topic>Phase transformation (A)</topic><topic>Phase transitions</topic><topic>Plastic deformation</topic><topic>polycrystalline material</topic><topic>Polycrystalline material (B)</topic><topic>Position measurement</topic><topic>Shape memory alloys</topic><topic>Simulation</topic><topic>Strain</topic><topic>Stress analysis</topic><topic>Studies</topic><topic>Titanium compounds</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paranjape, Harshad M.</creatorcontrib><creatorcontrib>Paul, Partha P.</creatorcontrib><creatorcontrib>Sharma, Hemant</creatorcontrib><creatorcontrib>Kenesei, Peter</creatorcontrib><creatorcontrib>Park, Jun-Sang</creatorcontrib><creatorcontrib>Duerig, T.W.</creatorcontrib><creatorcontrib>Brinson, L. Catherine</creatorcontrib><creatorcontrib>Stebner, Aaron P.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the mechanics and physics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paranjape, Harshad M.</au><au>Paul, Partha P.</au><au>Sharma, Hemant</au><au>Kenesei, Peter</au><au>Park, Jun-Sang</au><au>Duerig, T.W.</au><au>Brinson, L. Catherine</au><au>Stebner, Aaron P.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys</atitle><jtitle>Journal of the mechanics and physics of solids</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>102</volume><issue>C</issue><spage>46</spage><epage>66</epage><pages>46-66</pages><issn>0022-5096</issn><eissn>1873-4782</eissn><abstract>Deformation heterogeneities at the microstructural length-scale developed in polycrystalline shape memory alloys (SMAs) during superelastic loading are studied using both experiments and simulations. In situ X-ray diffraction, specifically the far-field high energy diffraction microscopy (ff-HEDM) technique, was used to non-destructively measure the grain-averaged statistics of position, crystal orientation, elastic strain tensor, and volume for hundreds of austenite grains in a superelastically loaded nickel-titanium (NiTi) SMA. These experimental data were also used to create a synthetic microstructure within a finite element model. The development of intragranular stresses were then simulated during tensile loading of the model using anisotropic elasticity. Driving forces for phase transformation and slip were calculated from these stresses. The grain-average responses of individual austenite crystals examined before and after multiple stress-induced transformation events showed that grains in the specimen interior carry more axial stress than the surface grains as the superelastic response “shakes down”. Examination of the heterogeneity within individual grains showed that regions near grain boundaries exhibit larger stress variation compared to the grain interiors. This intragranular heterogeneity is more strongly driven by the constraints of neighboring grains than the initial stress state and orientation of the individual grains.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jmps.2017.02.007</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5096
ispartof Journal of the mechanics and physics of solids, 2017-05, Vol.102 (C), p.46-66
issn 0022-5096
1873-4782
language eng
recordid cdi_osti_scitechconnect_1365399
source ScienceDirect Journals (5 years ago - present)
subjects Alloy development
Alloys
Austenite
Axial stress
Computer simulation
Crystal structure
Elastic deformation
Elasticity
Energy measurement
Finite element method
finite elements
Finite elements (C)
Grain boundaries
Heterogeneity
Intermetallic compounds
Martensitic transformations
MATERIALS SCIENCE
Mathematical analysis
Microstructure
microstructures
Microstructures (A)
Nickel base alloys
Nickel compounds
Nickel titanides
phase transformation
Phase transformation (A)
Phase transitions
Plastic deformation
polycrystalline material
Polycrystalline material (B)
Position measurement
Shape memory alloys
Simulation
Strain
Stress analysis
Studies
Titanium compounds
X-ray diffraction
title Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20granular%20constraints%20and%20surface%20effects%20on%20the%20heterogeneity%20of%20elastic,%20superelastic,%20and%20plastic%20responses%20of%20polycrystalline%20shape%20memory%20alloys&rft.jtitle=Journal%20of%20the%20mechanics%20and%20physics%20of%20solids&rft.au=Paranjape,%20Harshad%20M.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2017-05-01&rft.volume=102&rft.issue=C&rft.spage=46&rft.epage=66&rft.pages=46-66&rft.issn=0022-5096&rft.eissn=1873-4782&rft_id=info:doi/10.1016/j.jmps.2017.02.007&rft_dat=%3Cproquest_osti_%3E1938555905%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1938555905&rft_id=info:pmid/&rft_els_id=S002250961630881X&rfr_iscdi=true