A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics

Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2017-04, Vol.178 (C), p.111-134
Hauptverfasser: Atef, Nour, Kukkadapu, Goutham, Mohamed, Samah Y., Rashidi, Mariam Al, Banyon, Colin, Mehl, Marco, Heufer, Karl Alexander, Nasir, Ehson F., Alfazazi, A., Das, Apurba K., Westbrook, Charles K., Pitz, William J., Lu, Tianfeng, Farooq, Aamir, Sung, Chih-Jen, Curran, Henry J., Sarathy, S. Mani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue C
container_start_page 111
container_title Combustion and flame
container_volume 178
creator Atef, Nour
Kukkadapu, Goutham
Mohamed, Samah Y.
Rashidi, Mariam Al
Banyon, Colin
Mehl, Marco
Heufer, Karl Alexander
Nasir, Ehson F.
Alfazazi, A.
Das, Apurba K.
Westbrook, Charles K.
Pitz, William J.
Lu, Tianfeng
Farooq, Aamir
Sung, Chih-Jen
Curran, Henry J.
Sarathy, S. Mani
description Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.
doi_str_mv 10.1016/j.combustflame.2016.12.029
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1361588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218016304059</els_id><sourcerecordid>1925160451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</originalsourceid><addsrcrecordid>eNqNkEFP3DAQha2KSl1o_4MF56Qex_Ym3BAFioTEpT1bjj1RvN3Y1PYu4t_X6XLosafRjN58eu8RcgmsBQbq6661cRkPuUx7s2DL660F3jI-fCAbkFI1fOBwRjaMAWs49OwTOc95xxjbiq7bEH1DK-El4Ywh-yNSn2MTbTEB6Tvax0CX6HBPX32Zqa_qeERHy4xpiXbGxeeS3qgJjv7drNnTXz5g8TZ_Jh8ns8_45X1ekJ_3dz9uvzdPzw-PtzdPjRWqL800qlGOTgnRIZhtz2AQcuCdkUK4SZjJbd0g5SjBjmMvlWI9ZwrsNE7bXnbQXZDLEzdWwzpbX9DONoaAtmjoFMi-r6Krk6gm-H3AXPQuHlKovjQMXIJiQq6o65PKpphzwkm_JL-Y9KaB6bV1vdP_tq7X1jVwXVuvz99Oz1jDHj2m1QsGi86n1YqL_n8wfwBep5Mm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925160451</pqid></control><display><type>article</type><title>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Atef, Nour ; Kukkadapu, Goutham ; Mohamed, Samah Y. ; Rashidi, Mariam Al ; Banyon, Colin ; Mehl, Marco ; Heufer, Karl Alexander ; Nasir, Ehson F. ; Alfazazi, A. ; Das, Apurba K. ; Westbrook, Charles K. ; Pitz, William J. ; Lu, Tianfeng ; Farooq, Aamir ; Sung, Chih-Jen ; Curran, Henry J. ; Sarathy, S. Mani</creator><creatorcontrib>Atef, Nour ; Kukkadapu, Goutham ; Mohamed, Samah Y. ; Rashidi, Mariam Al ; Banyon, Colin ; Mehl, Marco ; Heufer, Karl Alexander ; Nasir, Ehson F. ; Alfazazi, A. ; Das, Apurba K. ; Westbrook, Charles K. ; Pitz, William J. ; Lu, Tianfeng ; Farooq, Aamir ; Sung, Chih-Jen ; Curran, Henry J. ; Sarathy, S. Mani ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2016.12.029</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Alkanes ; Alternative isomerisation ; Chemical reactions ; Combustion ; Combustion chemistry ; Combustion kinetics ; Compression tests ; Counterflow ; Data compression ; Delay ; Diesel engines ; Diffusion rate ; Gasoline ; Gauche ; Ignition ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Iso-Octane ; Isomerization ; Isooctane ; Kinetics ; Mathematical models ; Nuclear fuels ; Octane ; Oxidation ; Pyrolysis ; Reaction kinetics ; Speciation ; Studies ; Thermochemistry ; Thermodynamics</subject><ispartof>Combustion and flame, 2017-04, Vol.178 (C), p.111-134</ispartof><rights>2016 The Combustion Institute</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</citedby><cites>FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</cites><orcidid>0000-0002-9096-8714 ; 0000000290968714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2016.12.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361588$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Atef, Nour</creatorcontrib><creatorcontrib>Kukkadapu, Goutham</creatorcontrib><creatorcontrib>Mohamed, Samah Y.</creatorcontrib><creatorcontrib>Rashidi, Mariam Al</creatorcontrib><creatorcontrib>Banyon, Colin</creatorcontrib><creatorcontrib>Mehl, Marco</creatorcontrib><creatorcontrib>Heufer, Karl Alexander</creatorcontrib><creatorcontrib>Nasir, Ehson F.</creatorcontrib><creatorcontrib>Alfazazi, A.</creatorcontrib><creatorcontrib>Das, Apurba K.</creatorcontrib><creatorcontrib>Westbrook, Charles K.</creatorcontrib><creatorcontrib>Pitz, William J.</creatorcontrib><creatorcontrib>Lu, Tianfeng</creatorcontrib><creatorcontrib>Farooq, Aamir</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Curran, Henry J.</creatorcontrib><creatorcontrib>Sarathy, S. Mani</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</title><title>Combustion and flame</title><description>Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.</description><subject>Alkanes</subject><subject>Alternative isomerisation</subject><subject>Chemical reactions</subject><subject>Combustion</subject><subject>Combustion chemistry</subject><subject>Combustion kinetics</subject><subject>Compression tests</subject><subject>Counterflow</subject><subject>Data compression</subject><subject>Delay</subject><subject>Diesel engines</subject><subject>Diffusion rate</subject><subject>Gasoline</subject><subject>Gauche</subject><subject>Ignition</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Iso-Octane</subject><subject>Isomerization</subject><subject>Isooctane</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Nuclear fuels</subject><subject>Octane</subject><subject>Oxidation</subject><subject>Pyrolysis</subject><subject>Reaction kinetics</subject><subject>Speciation</subject><subject>Studies</subject><subject>Thermochemistry</subject><subject>Thermodynamics</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEFP3DAQha2KSl1o_4MF56Qex_Ym3BAFioTEpT1bjj1RvN3Y1PYu4t_X6XLosafRjN58eu8RcgmsBQbq6661cRkPuUx7s2DL660F3jI-fCAbkFI1fOBwRjaMAWs49OwTOc95xxjbiq7bEH1DK-El4Ywh-yNSn2MTbTEB6Tvax0CX6HBPX32Zqa_qeERHy4xpiXbGxeeS3qgJjv7drNnTXz5g8TZ_Jh8ns8_45X1ekJ_3dz9uvzdPzw-PtzdPjRWqL800qlGOTgnRIZhtz2AQcuCdkUK4SZjJbd0g5SjBjmMvlWI9ZwrsNE7bXnbQXZDLEzdWwzpbX9DONoaAtmjoFMi-r6Krk6gm-H3AXPQuHlKovjQMXIJiQq6o65PKpphzwkm_JL-Y9KaB6bV1vdP_tq7X1jVwXVuvz99Oz1jDHj2m1QsGi86n1YqL_n8wfwBep5Mm</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Atef, Nour</creator><creator>Kukkadapu, Goutham</creator><creator>Mohamed, Samah Y.</creator><creator>Rashidi, Mariam Al</creator><creator>Banyon, Colin</creator><creator>Mehl, Marco</creator><creator>Heufer, Karl Alexander</creator><creator>Nasir, Ehson F.</creator><creator>Alfazazi, A.</creator><creator>Das, Apurba K.</creator><creator>Westbrook, Charles K.</creator><creator>Pitz, William J.</creator><creator>Lu, Tianfeng</creator><creator>Farooq, Aamir</creator><creator>Sung, Chih-Jen</creator><creator>Curran, Henry J.</creator><creator>Sarathy, S. Mani</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9096-8714</orcidid><orcidid>https://orcid.org/0000000290968714</orcidid></search><sort><creationdate>20170401</creationdate><title>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</title><author>Atef, Nour ; Kukkadapu, Goutham ; Mohamed, Samah Y. ; Rashidi, Mariam Al ; Banyon, Colin ; Mehl, Marco ; Heufer, Karl Alexander ; Nasir, Ehson F. ; Alfazazi, A. ; Das, Apurba K. ; Westbrook, Charles K. ; Pitz, William J. ; Lu, Tianfeng ; Farooq, Aamir ; Sung, Chih-Jen ; Curran, Henry J. ; Sarathy, S. Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkanes</topic><topic>Alternative isomerisation</topic><topic>Chemical reactions</topic><topic>Combustion</topic><topic>Combustion chemistry</topic><topic>Combustion kinetics</topic><topic>Compression tests</topic><topic>Counterflow</topic><topic>Data compression</topic><topic>Delay</topic><topic>Diesel engines</topic><topic>Diffusion rate</topic><topic>Gasoline</topic><topic>Gauche</topic><topic>Ignition</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Iso-Octane</topic><topic>Isomerization</topic><topic>Isooctane</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Nuclear fuels</topic><topic>Octane</topic><topic>Oxidation</topic><topic>Pyrolysis</topic><topic>Reaction kinetics</topic><topic>Speciation</topic><topic>Studies</topic><topic>Thermochemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atef, Nour</creatorcontrib><creatorcontrib>Kukkadapu, Goutham</creatorcontrib><creatorcontrib>Mohamed, Samah Y.</creatorcontrib><creatorcontrib>Rashidi, Mariam Al</creatorcontrib><creatorcontrib>Banyon, Colin</creatorcontrib><creatorcontrib>Mehl, Marco</creatorcontrib><creatorcontrib>Heufer, Karl Alexander</creatorcontrib><creatorcontrib>Nasir, Ehson F.</creatorcontrib><creatorcontrib>Alfazazi, A.</creatorcontrib><creatorcontrib>Das, Apurba K.</creatorcontrib><creatorcontrib>Westbrook, Charles K.</creatorcontrib><creatorcontrib>Pitz, William J.</creatorcontrib><creatorcontrib>Lu, Tianfeng</creatorcontrib><creatorcontrib>Farooq, Aamir</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Curran, Henry J.</creatorcontrib><creatorcontrib>Sarathy, S. Mani</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atef, Nour</au><au>Kukkadapu, Goutham</au><au>Mohamed, Samah Y.</au><au>Rashidi, Mariam Al</au><au>Banyon, Colin</au><au>Mehl, Marco</au><au>Heufer, Karl Alexander</au><au>Nasir, Ehson F.</au><au>Alfazazi, A.</au><au>Das, Apurba K.</au><au>Westbrook, Charles K.</au><au>Pitz, William J.</au><au>Lu, Tianfeng</au><au>Farooq, Aamir</au><au>Sung, Chih-Jen</au><au>Curran, Henry J.</au><au>Sarathy, S. Mani</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</atitle><jtitle>Combustion and flame</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>178</volume><issue>C</issue><spage>111</spage><epage>134</epage><pages>111-134</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2016.12.029</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9096-8714</orcidid><orcidid>https://orcid.org/0000000290968714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2017-04, Vol.178 (C), p.111-134
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_1361588
source Access via ScienceDirect (Elsevier)
subjects Alkanes
Alternative isomerisation
Chemical reactions
Combustion
Combustion chemistry
Combustion kinetics
Compression tests
Counterflow
Data compression
Delay
Diesel engines
Diffusion rate
Gasoline
Gauche
Ignition
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
Iso-Octane
Isomerization
Isooctane
Kinetics
Mathematical models
Nuclear fuels
Octane
Oxidation
Pyrolysis
Reaction kinetics
Speciation
Studies
Thermochemistry
Thermodynamics
title A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20iso-octane%20combustion%20model%20with%20improved%20thermochemistry%20and%20chemical%20kinetics&rft.jtitle=Combustion%20and%20flame&rft.au=Atef,%20Nour&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-04-01&rft.volume=178&rft.issue=C&rft.spage=111&rft.epage=134&rft.pages=111-134&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2016.12.029&rft_dat=%3Cproquest_osti_%3E1925160451%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925160451&rft_id=info:pmid/&rft_els_id=S0010218016304059&rfr_iscdi=true