A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane c...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2017-04, Vol.178 (C), p.111-134 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | C |
container_start_page | 111 |
container_title | Combustion and flame |
container_volume | 178 |
creator | Atef, Nour Kukkadapu, Goutham Mohamed, Samah Y. Rashidi, Mariam Al Banyon, Colin Mehl, Marco Heufer, Karl Alexander Nasir, Ehson F. Alfazazi, A. Das, Apurba K. Westbrook, Charles K. Pitz, William J. Lu, Tianfeng Farooq, Aamir Sung, Chih-Jen Curran, Henry J. Sarathy, S. Mani |
description | Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry. |
doi_str_mv | 10.1016/j.combustflame.2016.12.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1361588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218016304059</els_id><sourcerecordid>1925160451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</originalsourceid><addsrcrecordid>eNqNkEFP3DAQha2KSl1o_4MF56Qex_Ym3BAFioTEpT1bjj1RvN3Y1PYu4t_X6XLosafRjN58eu8RcgmsBQbq6661cRkPuUx7s2DL660F3jI-fCAbkFI1fOBwRjaMAWs49OwTOc95xxjbiq7bEH1DK-El4Ywh-yNSn2MTbTEB6Tvax0CX6HBPX32Zqa_qeERHy4xpiXbGxeeS3qgJjv7drNnTXz5g8TZ_Jh8ns8_45X1ekJ_3dz9uvzdPzw-PtzdPjRWqL800qlGOTgnRIZhtz2AQcuCdkUK4SZjJbd0g5SjBjmMvlWI9ZwrsNE7bXnbQXZDLEzdWwzpbX9DONoaAtmjoFMi-r6Krk6gm-H3AXPQuHlKovjQMXIJiQq6o65PKpphzwkm_JL-Y9KaB6bV1vdP_tq7X1jVwXVuvz99Oz1jDHj2m1QsGi86n1YqL_n8wfwBep5Mm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925160451</pqid></control><display><type>article</type><title>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Atef, Nour ; Kukkadapu, Goutham ; Mohamed, Samah Y. ; Rashidi, Mariam Al ; Banyon, Colin ; Mehl, Marco ; Heufer, Karl Alexander ; Nasir, Ehson F. ; Alfazazi, A. ; Das, Apurba K. ; Westbrook, Charles K. ; Pitz, William J. ; Lu, Tianfeng ; Farooq, Aamir ; Sung, Chih-Jen ; Curran, Henry J. ; Sarathy, S. Mani</creator><creatorcontrib>Atef, Nour ; Kukkadapu, Goutham ; Mohamed, Samah Y. ; Rashidi, Mariam Al ; Banyon, Colin ; Mehl, Marco ; Heufer, Karl Alexander ; Nasir, Ehson F. ; Alfazazi, A. ; Das, Apurba K. ; Westbrook, Charles K. ; Pitz, William J. ; Lu, Tianfeng ; Farooq, Aamir ; Sung, Chih-Jen ; Curran, Henry J. ; Sarathy, S. Mani ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2016.12.029</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Alkanes ; Alternative isomerisation ; Chemical reactions ; Combustion ; Combustion chemistry ; Combustion kinetics ; Compression tests ; Counterflow ; Data compression ; Delay ; Diesel engines ; Diffusion rate ; Gasoline ; Gauche ; Ignition ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; Iso-Octane ; Isomerization ; Isooctane ; Kinetics ; Mathematical models ; Nuclear fuels ; Octane ; Oxidation ; Pyrolysis ; Reaction kinetics ; Speciation ; Studies ; Thermochemistry ; Thermodynamics</subject><ispartof>Combustion and flame, 2017-04, Vol.178 (C), p.111-134</ispartof><rights>2016 The Combustion Institute</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</citedby><cites>FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</cites><orcidid>0000-0002-9096-8714 ; 0000000290968714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2016.12.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361588$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Atef, Nour</creatorcontrib><creatorcontrib>Kukkadapu, Goutham</creatorcontrib><creatorcontrib>Mohamed, Samah Y.</creatorcontrib><creatorcontrib>Rashidi, Mariam Al</creatorcontrib><creatorcontrib>Banyon, Colin</creatorcontrib><creatorcontrib>Mehl, Marco</creatorcontrib><creatorcontrib>Heufer, Karl Alexander</creatorcontrib><creatorcontrib>Nasir, Ehson F.</creatorcontrib><creatorcontrib>Alfazazi, A.</creatorcontrib><creatorcontrib>Das, Apurba K.</creatorcontrib><creatorcontrib>Westbrook, Charles K.</creatorcontrib><creatorcontrib>Pitz, William J.</creatorcontrib><creatorcontrib>Lu, Tianfeng</creatorcontrib><creatorcontrib>Farooq, Aamir</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Curran, Henry J.</creatorcontrib><creatorcontrib>Sarathy, S. Mani</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</title><title>Combustion and flame</title><description>Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.</description><subject>Alkanes</subject><subject>Alternative isomerisation</subject><subject>Chemical reactions</subject><subject>Combustion</subject><subject>Combustion chemistry</subject><subject>Combustion kinetics</subject><subject>Compression tests</subject><subject>Counterflow</subject><subject>Data compression</subject><subject>Delay</subject><subject>Diesel engines</subject><subject>Diffusion rate</subject><subject>Gasoline</subject><subject>Gauche</subject><subject>Ignition</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>Iso-Octane</subject><subject>Isomerization</subject><subject>Isooctane</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Nuclear fuels</subject><subject>Octane</subject><subject>Oxidation</subject><subject>Pyrolysis</subject><subject>Reaction kinetics</subject><subject>Speciation</subject><subject>Studies</subject><subject>Thermochemistry</subject><subject>Thermodynamics</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEFP3DAQha2KSl1o_4MF56Qex_Ym3BAFioTEpT1bjj1RvN3Y1PYu4t_X6XLosafRjN58eu8RcgmsBQbq6661cRkPuUx7s2DL660F3jI-fCAbkFI1fOBwRjaMAWs49OwTOc95xxjbiq7bEH1DK-El4Ywh-yNSn2MTbTEB6Tvax0CX6HBPX32Zqa_qeERHy4xpiXbGxeeS3qgJjv7drNnTXz5g8TZ_Jh8ns8_45X1ekJ_3dz9uvzdPzw-PtzdPjRWqL800qlGOTgnRIZhtz2AQcuCdkUK4SZjJbd0g5SjBjmMvlWI9ZwrsNE7bXnbQXZDLEzdWwzpbX9DONoaAtmjoFMi-r6Krk6gm-H3AXPQuHlKovjQMXIJiQq6o65PKpphzwkm_JL-Y9KaB6bV1vdP_tq7X1jVwXVuvz99Oz1jDHj2m1QsGi86n1YqL_n8wfwBep5Mm</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Atef, Nour</creator><creator>Kukkadapu, Goutham</creator><creator>Mohamed, Samah Y.</creator><creator>Rashidi, Mariam Al</creator><creator>Banyon, Colin</creator><creator>Mehl, Marco</creator><creator>Heufer, Karl Alexander</creator><creator>Nasir, Ehson F.</creator><creator>Alfazazi, A.</creator><creator>Das, Apurba K.</creator><creator>Westbrook, Charles K.</creator><creator>Pitz, William J.</creator><creator>Lu, Tianfeng</creator><creator>Farooq, Aamir</creator><creator>Sung, Chih-Jen</creator><creator>Curran, Henry J.</creator><creator>Sarathy, S. Mani</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9096-8714</orcidid><orcidid>https://orcid.org/0000000290968714</orcidid></search><sort><creationdate>20170401</creationdate><title>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</title><author>Atef, Nour ; Kukkadapu, Goutham ; Mohamed, Samah Y. ; Rashidi, Mariam Al ; Banyon, Colin ; Mehl, Marco ; Heufer, Karl Alexander ; Nasir, Ehson F. ; Alfazazi, A. ; Das, Apurba K. ; Westbrook, Charles K. ; Pitz, William J. ; Lu, Tianfeng ; Farooq, Aamir ; Sung, Chih-Jen ; Curran, Henry J. ; Sarathy, S. Mani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-fb6b5bd6443e1a7801945923a544df4afd7d955b51cbb8566082061cfbf785313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkanes</topic><topic>Alternative isomerisation</topic><topic>Chemical reactions</topic><topic>Combustion</topic><topic>Combustion chemistry</topic><topic>Combustion kinetics</topic><topic>Compression tests</topic><topic>Counterflow</topic><topic>Data compression</topic><topic>Delay</topic><topic>Diesel engines</topic><topic>Diffusion rate</topic><topic>Gasoline</topic><topic>Gauche</topic><topic>Ignition</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>Iso-Octane</topic><topic>Isomerization</topic><topic>Isooctane</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Nuclear fuels</topic><topic>Octane</topic><topic>Oxidation</topic><topic>Pyrolysis</topic><topic>Reaction kinetics</topic><topic>Speciation</topic><topic>Studies</topic><topic>Thermochemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atef, Nour</creatorcontrib><creatorcontrib>Kukkadapu, Goutham</creatorcontrib><creatorcontrib>Mohamed, Samah Y.</creatorcontrib><creatorcontrib>Rashidi, Mariam Al</creatorcontrib><creatorcontrib>Banyon, Colin</creatorcontrib><creatorcontrib>Mehl, Marco</creatorcontrib><creatorcontrib>Heufer, Karl Alexander</creatorcontrib><creatorcontrib>Nasir, Ehson F.</creatorcontrib><creatorcontrib>Alfazazi, A.</creatorcontrib><creatorcontrib>Das, Apurba K.</creatorcontrib><creatorcontrib>Westbrook, Charles K.</creatorcontrib><creatorcontrib>Pitz, William J.</creatorcontrib><creatorcontrib>Lu, Tianfeng</creatorcontrib><creatorcontrib>Farooq, Aamir</creatorcontrib><creatorcontrib>Sung, Chih-Jen</creatorcontrib><creatorcontrib>Curran, Henry J.</creatorcontrib><creatorcontrib>Sarathy, S. Mani</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atef, Nour</au><au>Kukkadapu, Goutham</au><au>Mohamed, Samah Y.</au><au>Rashidi, Mariam Al</au><au>Banyon, Colin</au><au>Mehl, Marco</au><au>Heufer, Karl Alexander</au><au>Nasir, Ehson F.</au><au>Alfazazi, A.</au><au>Das, Apurba K.</au><au>Westbrook, Charles K.</au><au>Pitz, William J.</au><au>Lu, Tianfeng</au><au>Farooq, Aamir</au><au>Sung, Chih-Jen</au><au>Curran, Henry J.</au><au>Sarathy, S. Mani</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics</atitle><jtitle>Combustion and flame</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>178</volume><issue>C</issue><spage>111</spage><epage>134</epage><pages>111-134</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Moreover, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. Furthermore, new alternative isomerization pathways for peroxy-alkyl hydroperoxide (ȮOQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. These experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2016.12.029</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-9096-8714</orcidid><orcidid>https://orcid.org/0000000290968714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2017-04, Vol.178 (C), p.111-134 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_1361588 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alkanes Alternative isomerisation Chemical reactions Combustion Combustion chemistry Combustion kinetics Compression tests Counterflow Data compression Delay Diesel engines Diffusion rate Gasoline Gauche Ignition INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY Iso-Octane Isomerization Isooctane Kinetics Mathematical models Nuclear fuels Octane Oxidation Pyrolysis Reaction kinetics Speciation Studies Thermochemistry Thermodynamics |
title | A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20iso-octane%20combustion%20model%20with%20improved%20thermochemistry%20and%20chemical%20kinetics&rft.jtitle=Combustion%20and%20flame&rft.au=Atef,%20Nour&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2017-04-01&rft.volume=178&rft.issue=C&rft.spage=111&rft.epage=134&rft.pages=111-134&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2016.12.029&rft_dat=%3Cproquest_osti_%3E1925160451%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1925160451&rft_id=info:pmid/&rft_els_id=S0010218016304059&rfr_iscdi=true |