Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping

Hard carbon is the leading candidate anode for commercialization of Na‐ion batteries. Hard carbon has a unique local atomic structure, which is composed of nanodomains of layered rumpled sheets that have short‐range local order resembling graphene within each layer, but complete disorder along the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2017-09, Vol.7 (18), p.n/a
Hauptverfasser: Li, Zhifei, Bommier, Clement, Chong, Zhi Sen, Jian, Zelang, Surta, Todd Wesley, Wang, Xingfeng, Xing, Zhenyu, Neuefeind, Joerg C., Stickle, William F., Dolgos, Michelle, Greaney, P. Alex, Ji, Xiulei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Advanced energy materials
container_volume 7
creator Li, Zhifei
Bommier, Clement
Chong, Zhi Sen
Jian, Zelang
Surta, Todd Wesley
Wang, Xingfeng
Xing, Zhenyu
Neuefeind, Joerg C.
Stickle, William F.
Dolgos, Michelle
Greaney, P. Alex
Ji, Xiulei
description Hard carbon is the leading candidate anode for commercialization of Na‐ion batteries. Hard carbon has a unique local atomic structure, which is composed of nanodomains of layered rumpled sheets that have short‐range local order resembling graphene within each layer, but complete disorder along the c‐axis between layers. A primary challenge holding back the development of Na‐ion batteries is that a complete understanding of the structure–capacity correlations of Na‐ion storage in hard carbon has remained elusive. This article presents two key discoveries: first, the characteristics of hard carbons structure can be modified systematically by heteroatom doping, and second, that these structural changes greatly affect Na‐ion storage properties, which reveals the mechanisms for Na storage in hard carbon. Specifically, via P or S doping, the interlayer spacing is dilated, which extends the low‐voltage plateau capacity, while increasing the defect concentrations with P or B doping leads to higher sloping sodiation capacity. The combined experimental studies and first principles calculations reveal that it is the Na‐ion‐defect binding that corresponds to the sloping capacity, while the Na intercalation between graphenic layers causes the low‐potential plateau capacity. The understanding suggests a new design principle of hard carbon anode: more reversibly binding defects and dilated turbostratic domains, given that the specific surface area is maintained low. The structure of hard carbon is systematically tuned by heteroatom doping, which reveals the mechanism of sodium storage in hard carbon. Through P‐ and S‐doping, the d‐spacing of hard carbon is dilated, which leads to a higher plateau capacity, while P‐ and B‐doping generate more defects site, which enhances the first sodiation capacity. Computational studies provide indispensable confirmation of the mechanism.
doi_str_mv 10.1002/aenm.201602894
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1361320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1940588913</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4894-968835b2b7e35c9b0c43ac1495f0d5913b3f8b903e9a6be8d1d71366acee55d43</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhjdGE4ly9dzoebHddpf2SBCFBDB-nZu2O4tLoMV20XDzJ_gb_SWWrMGjc5nJ5Hnn402SC4J7BOPsWoFd9zJMCpxxwY6SDikISwvO8PGhptlp0g1hiWMwQTClneRhBuZV2TqskavQXH1_fk2cRU-N82oBqLZorHyJhsrr2B5YV0JAj_AOagUl0js0hga8U41boxu3qe3iPDmp1CpA9zefJS-3o-fhOJ3e302Gg2lqWLwwFQXnNNeZ7gPNjdDYMKoMYSKvcJkLQjWtuBaYglCFBl6Ssk9oUSgDkOclo2fJZTvXhaaWwdRN_MQ4a8E0MpKEZjhCVy208e5tC6GRS7f1Nt4liWA45zxuilSvpYx3IXio5MbXa-V3kmC5t1fu7ZUHe6NAtIKPegW7f2g5GM1nf9ofIJp9Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940588913</pqid></control><display><type>article</type><title>Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Zhifei ; Bommier, Clement ; Chong, Zhi Sen ; Jian, Zelang ; Surta, Todd Wesley ; Wang, Xingfeng ; Xing, Zhenyu ; Neuefeind, Joerg C. ; Stickle, William F. ; Dolgos, Michelle ; Greaney, P. Alex ; Ji, Xiulei</creator><creatorcontrib>Li, Zhifei ; Bommier, Clement ; Chong, Zhi Sen ; Jian, Zelang ; Surta, Todd Wesley ; Wang, Xingfeng ; Xing, Zhenyu ; Neuefeind, Joerg C. ; Stickle, William F. ; Dolgos, Michelle ; Greaney, P. Alex ; Ji, Xiulei ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><description>Hard carbon is the leading candidate anode for commercialization of Na‐ion batteries. Hard carbon has a unique local atomic structure, which is composed of nanodomains of layered rumpled sheets that have short‐range local order resembling graphene within each layer, but complete disorder along the c‐axis between layers. A primary challenge holding back the development of Na‐ion batteries is that a complete understanding of the structure–capacity correlations of Na‐ion storage in hard carbon has remained elusive. This article presents two key discoveries: first, the characteristics of hard carbons structure can be modified systematically by heteroatom doping, and second, that these structural changes greatly affect Na‐ion storage properties, which reveals the mechanisms for Na storage in hard carbon. Specifically, via P or S doping, the interlayer spacing is dilated, which extends the low‐voltage plateau capacity, while increasing the defect concentrations with P or B doping leads to higher sloping sodiation capacity. The combined experimental studies and first principles calculations reveal that it is the Na‐ion‐defect binding that corresponds to the sloping capacity, while the Na intercalation between graphenic layers causes the low‐potential plateau capacity. The understanding suggests a new design principle of hard carbon anode: more reversibly binding defects and dilated turbostratic domains, given that the specific surface area is maintained low. The structure of hard carbon is systematically tuned by heteroatom doping, which reveals the mechanism of sodium storage in hard carbon. Through P‐ and S‐doping, the d‐spacing of hard carbon is dilated, which leads to a higher plateau capacity, while P‐ and B‐doping generate more defects site, which enhances the first sodiation capacity. Computational studies provide indispensable confirmation of the mechanism.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201602894</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Binding ; Carbon ; Commercialization ; Design defects ; Doping ; ENERGY STORAGE ; hard carbon anodes ; heteroatom doping ; Interlayers ; Ion storage ; local structures ; MATERIALS SCIENCE ; mechanisms ; Na-ion batteries ; Rechargeable batteries</subject><ispartof>Advanced energy materials, 2017-09, Vol.7 (18), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4894-968835b2b7e35c9b0c43ac1495f0d5913b3f8b903e9a6be8d1d71366acee55d43</citedby><cites>FETCH-LOGICAL-c4894-968835b2b7e35c9b0c43ac1495f0d5913b3f8b903e9a6be8d1d71366acee55d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201602894$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201602894$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361320$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhifei</creatorcontrib><creatorcontrib>Bommier, Clement</creatorcontrib><creatorcontrib>Chong, Zhi Sen</creatorcontrib><creatorcontrib>Jian, Zelang</creatorcontrib><creatorcontrib>Surta, Todd Wesley</creatorcontrib><creatorcontrib>Wang, Xingfeng</creatorcontrib><creatorcontrib>Xing, Zhenyu</creatorcontrib><creatorcontrib>Neuefeind, Joerg C.</creatorcontrib><creatorcontrib>Stickle, William F.</creatorcontrib><creatorcontrib>Dolgos, Michelle</creatorcontrib><creatorcontrib>Greaney, P. Alex</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><title>Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping</title><title>Advanced energy materials</title><description>Hard carbon is the leading candidate anode for commercialization of Na‐ion batteries. Hard carbon has a unique local atomic structure, which is composed of nanodomains of layered rumpled sheets that have short‐range local order resembling graphene within each layer, but complete disorder along the c‐axis between layers. A primary challenge holding back the development of Na‐ion batteries is that a complete understanding of the structure–capacity correlations of Na‐ion storage in hard carbon has remained elusive. This article presents two key discoveries: first, the characteristics of hard carbons structure can be modified systematically by heteroatom doping, and second, that these structural changes greatly affect Na‐ion storage properties, which reveals the mechanisms for Na storage in hard carbon. Specifically, via P or S doping, the interlayer spacing is dilated, which extends the low‐voltage plateau capacity, while increasing the defect concentrations with P or B doping leads to higher sloping sodiation capacity. The combined experimental studies and first principles calculations reveal that it is the Na‐ion‐defect binding that corresponds to the sloping capacity, while the Na intercalation between graphenic layers causes the low‐potential plateau capacity. The understanding suggests a new design principle of hard carbon anode: more reversibly binding defects and dilated turbostratic domains, given that the specific surface area is maintained low. The structure of hard carbon is systematically tuned by heteroatom doping, which reveals the mechanism of sodium storage in hard carbon. Through P‐ and S‐doping, the d‐spacing of hard carbon is dilated, which leads to a higher plateau capacity, while P‐ and B‐doping generate more defects site, which enhances the first sodiation capacity. Computational studies provide indispensable confirmation of the mechanism.</description><subject>Atomic structure</subject><subject>Binding</subject><subject>Carbon</subject><subject>Commercialization</subject><subject>Design defects</subject><subject>Doping</subject><subject>ENERGY STORAGE</subject><subject>hard carbon anodes</subject><subject>heteroatom doping</subject><subject>Interlayers</subject><subject>Ion storage</subject><subject>local structures</subject><subject>MATERIALS SCIENCE</subject><subject>mechanisms</subject><subject>Na-ion batteries</subject><subject>Rechargeable batteries</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhjdGE4ly9dzoebHddpf2SBCFBDB-nZu2O4tLoMV20XDzJ_gb_SWWrMGjc5nJ5Hnn402SC4J7BOPsWoFd9zJMCpxxwY6SDikISwvO8PGhptlp0g1hiWMwQTClneRhBuZV2TqskavQXH1_fk2cRU-N82oBqLZorHyJhsrr2B5YV0JAj_AOagUl0js0hga8U41boxu3qe3iPDmp1CpA9zefJS-3o-fhOJ3e302Gg2lqWLwwFQXnNNeZ7gPNjdDYMKoMYSKvcJkLQjWtuBaYglCFBl6Ssk9oUSgDkOclo2fJZTvXhaaWwdRN_MQ4a8E0MpKEZjhCVy208e5tC6GRS7f1Nt4liWA45zxuilSvpYx3IXio5MbXa-V3kmC5t1fu7ZUHe6NAtIKPegW7f2g5GM1nf9ofIJp9Nw</recordid><startdate>20170920</startdate><enddate>20170920</enddate><creator>Li, Zhifei</creator><creator>Bommier, Clement</creator><creator>Chong, Zhi Sen</creator><creator>Jian, Zelang</creator><creator>Surta, Todd Wesley</creator><creator>Wang, Xingfeng</creator><creator>Xing, Zhenyu</creator><creator>Neuefeind, Joerg C.</creator><creator>Stickle, William F.</creator><creator>Dolgos, Michelle</creator><creator>Greaney, P. Alex</creator><creator>Ji, Xiulei</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170920</creationdate><title>Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping</title><author>Li, Zhifei ; Bommier, Clement ; Chong, Zhi Sen ; Jian, Zelang ; Surta, Todd Wesley ; Wang, Xingfeng ; Xing, Zhenyu ; Neuefeind, Joerg C. ; Stickle, William F. ; Dolgos, Michelle ; Greaney, P. Alex ; Ji, Xiulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4894-968835b2b7e35c9b0c43ac1495f0d5913b3f8b903e9a6be8d1d71366acee55d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic structure</topic><topic>Binding</topic><topic>Carbon</topic><topic>Commercialization</topic><topic>Design defects</topic><topic>Doping</topic><topic>ENERGY STORAGE</topic><topic>hard carbon anodes</topic><topic>heteroatom doping</topic><topic>Interlayers</topic><topic>Ion storage</topic><topic>local structures</topic><topic>MATERIALS SCIENCE</topic><topic>mechanisms</topic><topic>Na-ion batteries</topic><topic>Rechargeable batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhifei</creatorcontrib><creatorcontrib>Bommier, Clement</creatorcontrib><creatorcontrib>Chong, Zhi Sen</creatorcontrib><creatorcontrib>Jian, Zelang</creatorcontrib><creatorcontrib>Surta, Todd Wesley</creatorcontrib><creatorcontrib>Wang, Xingfeng</creatorcontrib><creatorcontrib>Xing, Zhenyu</creatorcontrib><creatorcontrib>Neuefeind, Joerg C.</creatorcontrib><creatorcontrib>Stickle, William F.</creatorcontrib><creatorcontrib>Dolgos, Michelle</creatorcontrib><creatorcontrib>Greaney, P. Alex</creatorcontrib><creatorcontrib>Ji, Xiulei</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhifei</au><au>Bommier, Clement</au><au>Chong, Zhi Sen</au><au>Jian, Zelang</au><au>Surta, Todd Wesley</au><au>Wang, Xingfeng</au><au>Xing, Zhenyu</au><au>Neuefeind, Joerg C.</au><au>Stickle, William F.</au><au>Dolgos, Michelle</au><au>Greaney, P. Alex</au><au>Ji, Xiulei</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping</atitle><jtitle>Advanced energy materials</jtitle><date>2017-09-20</date><risdate>2017</risdate><volume>7</volume><issue>18</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Hard carbon is the leading candidate anode for commercialization of Na‐ion batteries. Hard carbon has a unique local atomic structure, which is composed of nanodomains of layered rumpled sheets that have short‐range local order resembling graphene within each layer, but complete disorder along the c‐axis between layers. A primary challenge holding back the development of Na‐ion batteries is that a complete understanding of the structure–capacity correlations of Na‐ion storage in hard carbon has remained elusive. This article presents two key discoveries: first, the characteristics of hard carbons structure can be modified systematically by heteroatom doping, and second, that these structural changes greatly affect Na‐ion storage properties, which reveals the mechanisms for Na storage in hard carbon. Specifically, via P or S doping, the interlayer spacing is dilated, which extends the low‐voltage plateau capacity, while increasing the defect concentrations with P or B doping leads to higher sloping sodiation capacity. The combined experimental studies and first principles calculations reveal that it is the Na‐ion‐defect binding that corresponds to the sloping capacity, while the Na intercalation between graphenic layers causes the low‐potential plateau capacity. The understanding suggests a new design principle of hard carbon anode: more reversibly binding defects and dilated turbostratic domains, given that the specific surface area is maintained low. The structure of hard carbon is systematically tuned by heteroatom doping, which reveals the mechanism of sodium storage in hard carbon. Through P‐ and S‐doping, the d‐spacing of hard carbon is dilated, which leads to a higher plateau capacity, while P‐ and B‐doping generate more defects site, which enhances the first sodiation capacity. Computational studies provide indispensable confirmation of the mechanism.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201602894</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2017-09, Vol.7 (18), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1361320
source Wiley Online Library Journals Frontfile Complete
subjects Atomic structure
Binding
Carbon
Commercialization
Design defects
Doping
ENERGY STORAGE
hard carbon anodes
heteroatom doping
Interlayers
Ion storage
local structures
MATERIALS SCIENCE
mechanisms
Na-ion batteries
Rechargeable batteries
title Mechanism of Na‐Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Na%E2%80%90Ion%20Storage%20in%20Hard%20Carbon%20Anodes%20Revealed%20by%20Heteroatom%20Doping&rft.jtitle=Advanced%20energy%20materials&rft.au=Li,%20Zhifei&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2017-09-20&rft.volume=7&rft.issue=18&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201602894&rft_dat=%3Cproquest_osti_%3E1940588913%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940588913&rft_id=info:pmid/&rfr_iscdi=true