Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement

Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-04, Vol.17 (4), p.2426-2432
Hauptverfasser: Granitzka, Patrick W, Jal, Emmanuelle, Le Guyader, Loïc, Savoini, Matteo, Higley, Daniel J, Liu, Tianmin, Chen, Zhao, Chase, Tyler, Ohldag, Hendrik, Dakovski, Georgi L, Schlotter, William F, Carron, Sebastian, Hoffman, Matthias C, Gray, Alexander X, Shafer, Padraic, Arenholz, Elke, Hellwig, Olav, Mehta, Virat, Takahashi, Yukiko K, Wang, Jian, Fullerton, Eric E, Stöhr, Joachim, Reid, Alexander H, Dürr, Hermann A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2432
container_issue 4
container_start_page 2426
container_title Nano letters
container_volume 17
creator Granitzka, Patrick W
Jal, Emmanuelle
Le Guyader, Loïc
Savoini, Matteo
Higley, Daniel J
Liu, Tianmin
Chen, Zhao
Chase, Tyler
Ohldag, Hendrik
Dakovski, Georgi L
Schlotter, William F
Carron, Sebastian
Hoffman, Matthias C
Gray, Alexander X
Shafer, Padraic
Arenholz, Elke
Hellwig, Olav
Mehta, Virat
Takahashi, Yukiko K
Wang, Jian
Fullerton, Eric E
Stöhr, Joachim
Reid, Alexander H
Dürr, Hermann A
description Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.
doi_str_mv 10.1021/acs.nanolett.7b00052
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1361059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878818883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</originalsourceid><addsrcrecordid>eNp9kcFu3CAURa2qVZKm-YOqQl21C08BG4OXUZRJKk3bSGnX6Bk_Z4hsSAE3mr8PI09m2RUIzr1PcIriI6MrRjn7BiauHDg_Ykor2VFKBX9TnDFR0bJpW_72uFf1afE-xseMtJWgJ8UpV1xy1cqz4v4HPDhM1pD7Z5vM1roHYh25CeDmEQJZ410iG9hhiOQu-Mkn7Em3Iz8RQrm2OPb5NmIg124LzuCELn0o3g0wRrw4rOfFn_X176vbcvPr5vvV5aYEIVQqW1OZiklBa6Y6YFVteG-AYiPVAB2DmnPBa8VxaLr8ksEIyTtqugF6hZI31Xnxeen1MVkdjU1otsY7hyZpVjWMijZDXxdoC6N-CnaCsNMerL693Oj9GeU1FbKS_1hmvyzsU_B_Z4xJTzYaHEdw6OeomZJKMaVUldF6QU3wMQYcjt2M6r0fnf3oVz_64CfHPh0mzN2E_TH0KiQDdAH28Uc_B5d_8P-dL1-Cnco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878818883</pqid></control><display><type>article</type><title>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</title><source>ACS Publications</source><creator>Granitzka, Patrick W ; Jal, Emmanuelle ; Le Guyader, Loïc ; Savoini, Matteo ; Higley, Daniel J ; Liu, Tianmin ; Chen, Zhao ; Chase, Tyler ; Ohldag, Hendrik ; Dakovski, Georgi L ; Schlotter, William F ; Carron, Sebastian ; Hoffman, Matthias C ; Gray, Alexander X ; Shafer, Padraic ; Arenholz, Elke ; Hellwig, Olav ; Mehta, Virat ; Takahashi, Yukiko K ; Wang, Jian ; Fullerton, Eric E ; Stöhr, Joachim ; Reid, Alexander H ; Dürr, Hermann A</creator><creatorcontrib>Granitzka, Patrick W ; Jal, Emmanuelle ; Le Guyader, Loïc ; Savoini, Matteo ; Higley, Daniel J ; Liu, Tianmin ; Chen, Zhao ; Chase, Tyler ; Ohldag, Hendrik ; Dakovski, Georgi L ; Schlotter, William F ; Carron, Sebastian ; Hoffman, Matthias C ; Gray, Alexander X ; Shafer, Padraic ; Arenholz, Elke ; Hellwig, Olav ; Mehta, Virat ; Takahashi, Yukiko K ; Wang, Jian ; Fullerton, Eric E ; Stöhr, Joachim ; Reid, Alexander H ; Dürr, Hermann A ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b00052</identifier><identifier>PMID: 28272897</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Condensed Matter ; FePt ; magnetic switching ; MATERIALS SCIENCE ; Physics ; pump−probe ; ultrafast magnetism ; X-ray scattering</subject><ispartof>Nano letters, 2017-04, Vol.17 (4), p.2426-2432</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</citedby><cites>FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</cites><orcidid>0000-0001-5297-9124 ; 0000-0003-0076-7079 ; 0000000152979124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b00052$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b00052$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28272897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02405737$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361059$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Granitzka, Patrick W</creatorcontrib><creatorcontrib>Jal, Emmanuelle</creatorcontrib><creatorcontrib>Le Guyader, Loïc</creatorcontrib><creatorcontrib>Savoini, Matteo</creatorcontrib><creatorcontrib>Higley, Daniel J</creatorcontrib><creatorcontrib>Liu, Tianmin</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Chase, Tyler</creatorcontrib><creatorcontrib>Ohldag, Hendrik</creatorcontrib><creatorcontrib>Dakovski, Georgi L</creatorcontrib><creatorcontrib>Schlotter, William F</creatorcontrib><creatorcontrib>Carron, Sebastian</creatorcontrib><creatorcontrib>Hoffman, Matthias C</creatorcontrib><creatorcontrib>Gray, Alexander X</creatorcontrib><creatorcontrib>Shafer, Padraic</creatorcontrib><creatorcontrib>Arenholz, Elke</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Mehta, Virat</creatorcontrib><creatorcontrib>Takahashi, Yukiko K</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Fullerton, Eric E</creatorcontrib><creatorcontrib>Stöhr, Joachim</creatorcontrib><creatorcontrib>Reid, Alexander H</creatorcontrib><creatorcontrib>Dürr, Hermann A</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.</description><subject>Condensed Matter</subject><subject>FePt</subject><subject>magnetic switching</subject><subject>MATERIALS SCIENCE</subject><subject>Physics</subject><subject>pump−probe</subject><subject>ultrafast magnetism</subject><subject>X-ray scattering</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu3CAURa2qVZKm-YOqQl21C08BG4OXUZRJKk3bSGnX6Bk_Z4hsSAE3mr8PI09m2RUIzr1PcIriI6MrRjn7BiauHDg_Ykor2VFKBX9TnDFR0bJpW_72uFf1afE-xseMtJWgJ8UpV1xy1cqz4v4HPDhM1pD7Z5vM1roHYh25CeDmEQJZ410iG9hhiOQu-Mkn7Em3Iz8RQrm2OPb5NmIg124LzuCELn0o3g0wRrw4rOfFn_X176vbcvPr5vvV5aYEIVQqW1OZiklBa6Y6YFVteG-AYiPVAB2DmnPBa8VxaLr8ksEIyTtqugF6hZI31Xnxeen1MVkdjU1otsY7hyZpVjWMijZDXxdoC6N-CnaCsNMerL693Oj9GeU1FbKS_1hmvyzsU_B_Z4xJTzYaHEdw6OeomZJKMaVUldF6QU3wMQYcjt2M6r0fnf3oVz_64CfHPh0mzN2E_TH0KiQDdAH28Uc_B5d_8P-dL1-Cnco</recordid><startdate>20170412</startdate><enddate>20170412</enddate><creator>Granitzka, Patrick W</creator><creator>Jal, Emmanuelle</creator><creator>Le Guyader, Loïc</creator><creator>Savoini, Matteo</creator><creator>Higley, Daniel J</creator><creator>Liu, Tianmin</creator><creator>Chen, Zhao</creator><creator>Chase, Tyler</creator><creator>Ohldag, Hendrik</creator><creator>Dakovski, Georgi L</creator><creator>Schlotter, William F</creator><creator>Carron, Sebastian</creator><creator>Hoffman, Matthias C</creator><creator>Gray, Alexander X</creator><creator>Shafer, Padraic</creator><creator>Arenholz, Elke</creator><creator>Hellwig, Olav</creator><creator>Mehta, Virat</creator><creator>Takahashi, Yukiko K</creator><creator>Wang, Jian</creator><creator>Fullerton, Eric E</creator><creator>Stöhr, Joachim</creator><creator>Reid, Alexander H</creator><creator>Dürr, Hermann A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5297-9124</orcidid><orcidid>https://orcid.org/0000-0003-0076-7079</orcidid><orcidid>https://orcid.org/0000000152979124</orcidid></search><sort><creationdate>20170412</creationdate><title>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</title><author>Granitzka, Patrick W ; Jal, Emmanuelle ; Le Guyader, Loïc ; Savoini, Matteo ; Higley, Daniel J ; Liu, Tianmin ; Chen, Zhao ; Chase, Tyler ; Ohldag, Hendrik ; Dakovski, Georgi L ; Schlotter, William F ; Carron, Sebastian ; Hoffman, Matthias C ; Gray, Alexander X ; Shafer, Padraic ; Arenholz, Elke ; Hellwig, Olav ; Mehta, Virat ; Takahashi, Yukiko K ; Wang, Jian ; Fullerton, Eric E ; Stöhr, Joachim ; Reid, Alexander H ; Dürr, Hermann A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter</topic><topic>FePt</topic><topic>magnetic switching</topic><topic>MATERIALS SCIENCE</topic><topic>Physics</topic><topic>pump−probe</topic><topic>ultrafast magnetism</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granitzka, Patrick W</creatorcontrib><creatorcontrib>Jal, Emmanuelle</creatorcontrib><creatorcontrib>Le Guyader, Loïc</creatorcontrib><creatorcontrib>Savoini, Matteo</creatorcontrib><creatorcontrib>Higley, Daniel J</creatorcontrib><creatorcontrib>Liu, Tianmin</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Chase, Tyler</creatorcontrib><creatorcontrib>Ohldag, Hendrik</creatorcontrib><creatorcontrib>Dakovski, Georgi L</creatorcontrib><creatorcontrib>Schlotter, William F</creatorcontrib><creatorcontrib>Carron, Sebastian</creatorcontrib><creatorcontrib>Hoffman, Matthias C</creatorcontrib><creatorcontrib>Gray, Alexander X</creatorcontrib><creatorcontrib>Shafer, Padraic</creatorcontrib><creatorcontrib>Arenholz, Elke</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Mehta, Virat</creatorcontrib><creatorcontrib>Takahashi, Yukiko K</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Fullerton, Eric E</creatorcontrib><creatorcontrib>Stöhr, Joachim</creatorcontrib><creatorcontrib>Reid, Alexander H</creatorcontrib><creatorcontrib>Dürr, Hermann A</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granitzka, Patrick W</au><au>Jal, Emmanuelle</au><au>Le Guyader, Loïc</au><au>Savoini, Matteo</au><au>Higley, Daniel J</au><au>Liu, Tianmin</au><au>Chen, Zhao</au><au>Chase, Tyler</au><au>Ohldag, Hendrik</au><au>Dakovski, Georgi L</au><au>Schlotter, William F</au><au>Carron, Sebastian</au><au>Hoffman, Matthias C</au><au>Gray, Alexander X</au><au>Shafer, Padraic</au><au>Arenholz, Elke</au><au>Hellwig, Olav</au><au>Mehta, Virat</au><au>Takahashi, Yukiko K</au><au>Wang, Jian</au><au>Fullerton, Eric E</au><au>Stöhr, Joachim</au><au>Reid, Alexander H</au><au>Dürr, Hermann A</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-04-12</date><risdate>2017</risdate><volume>17</volume><issue>4</issue><spage>2426</spage><epage>2432</epage><pages>2426-2432</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28272897</pmid><doi>10.1021/acs.nanolett.7b00052</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5297-9124</orcidid><orcidid>https://orcid.org/0000-0003-0076-7079</orcidid><orcidid>https://orcid.org/0000000152979124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-04, Vol.17 (4), p.2426-2432
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1361059
source ACS Publications
subjects Condensed Matter
FePt
magnetic switching
MATERIALS SCIENCE
Physics
pump−probe
ultrafast magnetism
X-ray scattering
title Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Switching%20in%20Granular%20FePt%20Layers%20Promoted%20by%20Near-Field%20Laser%20Enhancement&rft.jtitle=Nano%20letters&rft.au=Granitzka,%20Patrick%20W&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-04-12&rft.volume=17&rft.issue=4&rft.spage=2426&rft.epage=2432&rft.pages=2426-2432&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b00052&rft_dat=%3Cproquest_osti_%3E1878818883%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878818883&rft_id=info:pmid/28272897&rfr_iscdi=true