Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement
Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing...
Gespeichert in:
Veröffentlicht in: | Nano letters 2017-04, Vol.17 (4), p.2426-2432 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2432 |
---|---|
container_issue | 4 |
container_start_page | 2426 |
container_title | Nano letters |
container_volume | 17 |
creator | Granitzka, Patrick W Jal, Emmanuelle Le Guyader, Loïc Savoini, Matteo Higley, Daniel J Liu, Tianmin Chen, Zhao Chase, Tyler Ohldag, Hendrik Dakovski, Georgi L Schlotter, William F Carron, Sebastian Hoffman, Matthias C Gray, Alexander X Shafer, Padraic Arenholz, Elke Hellwig, Olav Mehta, Virat Takahashi, Yukiko K Wang, Jian Fullerton, Eric E Stöhr, Joachim Reid, Alexander H Dürr, Hermann A |
description | Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer. |
doi_str_mv | 10.1021/acs.nanolett.7b00052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1361059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1878818883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</originalsourceid><addsrcrecordid>eNp9kcFu3CAURa2qVZKm-YOqQl21C08BG4OXUZRJKk3bSGnX6Bk_Z4hsSAE3mr8PI09m2RUIzr1PcIriI6MrRjn7BiauHDg_Ykor2VFKBX9TnDFR0bJpW_72uFf1afE-xseMtJWgJ8UpV1xy1cqz4v4HPDhM1pD7Z5vM1roHYh25CeDmEQJZ410iG9hhiOQu-Mkn7Em3Iz8RQrm2OPb5NmIg124LzuCELn0o3g0wRrw4rOfFn_X176vbcvPr5vvV5aYEIVQqW1OZiklBa6Y6YFVteG-AYiPVAB2DmnPBa8VxaLr8ksEIyTtqugF6hZI31Xnxeen1MVkdjU1otsY7hyZpVjWMijZDXxdoC6N-CnaCsNMerL693Oj9GeU1FbKS_1hmvyzsU_B_Z4xJTzYaHEdw6OeomZJKMaVUldF6QU3wMQYcjt2M6r0fnf3oVz_64CfHPh0mzN2E_TH0KiQDdAH28Uc_B5d_8P-dL1-Cnco</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878818883</pqid></control><display><type>article</type><title>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</title><source>ACS Publications</source><creator>Granitzka, Patrick W ; Jal, Emmanuelle ; Le Guyader, Loïc ; Savoini, Matteo ; Higley, Daniel J ; Liu, Tianmin ; Chen, Zhao ; Chase, Tyler ; Ohldag, Hendrik ; Dakovski, Georgi L ; Schlotter, William F ; Carron, Sebastian ; Hoffman, Matthias C ; Gray, Alexander X ; Shafer, Padraic ; Arenholz, Elke ; Hellwig, Olav ; Mehta, Virat ; Takahashi, Yukiko K ; Wang, Jian ; Fullerton, Eric E ; Stöhr, Joachim ; Reid, Alexander H ; Dürr, Hermann A</creator><creatorcontrib>Granitzka, Patrick W ; Jal, Emmanuelle ; Le Guyader, Loïc ; Savoini, Matteo ; Higley, Daniel J ; Liu, Tianmin ; Chen, Zhao ; Chase, Tyler ; Ohldag, Hendrik ; Dakovski, Georgi L ; Schlotter, William F ; Carron, Sebastian ; Hoffman, Matthias C ; Gray, Alexander X ; Shafer, Padraic ; Arenholz, Elke ; Hellwig, Olav ; Mehta, Virat ; Takahashi, Yukiko K ; Wang, Jian ; Fullerton, Eric E ; Stöhr, Joachim ; Reid, Alexander H ; Dürr, Hermann A ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b00052</identifier><identifier>PMID: 28272897</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Condensed Matter ; FePt ; magnetic switching ; MATERIALS SCIENCE ; Physics ; pump−probe ; ultrafast magnetism ; X-ray scattering</subject><ispartof>Nano letters, 2017-04, Vol.17 (4), p.2426-2432</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</citedby><cites>FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</cites><orcidid>0000-0001-5297-9124 ; 0000-0003-0076-7079 ; 0000000152979124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b00052$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b00052$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28272897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02405737$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1361059$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Granitzka, Patrick W</creatorcontrib><creatorcontrib>Jal, Emmanuelle</creatorcontrib><creatorcontrib>Le Guyader, Loïc</creatorcontrib><creatorcontrib>Savoini, Matteo</creatorcontrib><creatorcontrib>Higley, Daniel J</creatorcontrib><creatorcontrib>Liu, Tianmin</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Chase, Tyler</creatorcontrib><creatorcontrib>Ohldag, Hendrik</creatorcontrib><creatorcontrib>Dakovski, Georgi L</creatorcontrib><creatorcontrib>Schlotter, William F</creatorcontrib><creatorcontrib>Carron, Sebastian</creatorcontrib><creatorcontrib>Hoffman, Matthias C</creatorcontrib><creatorcontrib>Gray, Alexander X</creatorcontrib><creatorcontrib>Shafer, Padraic</creatorcontrib><creatorcontrib>Arenholz, Elke</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Mehta, Virat</creatorcontrib><creatorcontrib>Takahashi, Yukiko K</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Fullerton, Eric E</creatorcontrib><creatorcontrib>Stöhr, Joachim</creatorcontrib><creatorcontrib>Reid, Alexander H</creatorcontrib><creatorcontrib>Dürr, Hermann A</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.</description><subject>Condensed Matter</subject><subject>FePt</subject><subject>magnetic switching</subject><subject>MATERIALS SCIENCE</subject><subject>Physics</subject><subject>pump−probe</subject><subject>ultrafast magnetism</subject><subject>X-ray scattering</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu3CAURa2qVZKm-YOqQl21C08BG4OXUZRJKk3bSGnX6Bk_Z4hsSAE3mr8PI09m2RUIzr1PcIriI6MrRjn7BiauHDg_Ykor2VFKBX9TnDFR0bJpW_72uFf1afE-xseMtJWgJ8UpV1xy1cqz4v4HPDhM1pD7Z5vM1roHYh25CeDmEQJZ410iG9hhiOQu-Mkn7Em3Iz8RQrm2OPb5NmIg124LzuCELn0o3g0wRrw4rOfFn_X176vbcvPr5vvV5aYEIVQqW1OZiklBa6Y6YFVteG-AYiPVAB2DmnPBa8VxaLr8ksEIyTtqugF6hZI31Xnxeen1MVkdjU1otsY7hyZpVjWMijZDXxdoC6N-CnaCsNMerL693Oj9GeU1FbKS_1hmvyzsU_B_Z4xJTzYaHEdw6OeomZJKMaVUldF6QU3wMQYcjt2M6r0fnf3oVz_64CfHPh0mzN2E_TH0KiQDdAH28Uc_B5d_8P-dL1-Cnco</recordid><startdate>20170412</startdate><enddate>20170412</enddate><creator>Granitzka, Patrick W</creator><creator>Jal, Emmanuelle</creator><creator>Le Guyader, Loïc</creator><creator>Savoini, Matteo</creator><creator>Higley, Daniel J</creator><creator>Liu, Tianmin</creator><creator>Chen, Zhao</creator><creator>Chase, Tyler</creator><creator>Ohldag, Hendrik</creator><creator>Dakovski, Georgi L</creator><creator>Schlotter, William F</creator><creator>Carron, Sebastian</creator><creator>Hoffman, Matthias C</creator><creator>Gray, Alexander X</creator><creator>Shafer, Padraic</creator><creator>Arenholz, Elke</creator><creator>Hellwig, Olav</creator><creator>Mehta, Virat</creator><creator>Takahashi, Yukiko K</creator><creator>Wang, Jian</creator><creator>Fullerton, Eric E</creator><creator>Stöhr, Joachim</creator><creator>Reid, Alexander H</creator><creator>Dürr, Hermann A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5297-9124</orcidid><orcidid>https://orcid.org/0000-0003-0076-7079</orcidid><orcidid>https://orcid.org/0000000152979124</orcidid></search><sort><creationdate>20170412</creationdate><title>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</title><author>Granitzka, Patrick W ; Jal, Emmanuelle ; Le Guyader, Loïc ; Savoini, Matteo ; Higley, Daniel J ; Liu, Tianmin ; Chen, Zhao ; Chase, Tyler ; Ohldag, Hendrik ; Dakovski, Georgi L ; Schlotter, William F ; Carron, Sebastian ; Hoffman, Matthias C ; Gray, Alexander X ; Shafer, Padraic ; Arenholz, Elke ; Hellwig, Olav ; Mehta, Virat ; Takahashi, Yukiko K ; Wang, Jian ; Fullerton, Eric E ; Stöhr, Joachim ; Reid, Alexander H ; Dürr, Hermann A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a558t-9c3c31750418ba134c2dca0e678fab1a42252482ef6b153fc572b0cbfad8e7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter</topic><topic>FePt</topic><topic>magnetic switching</topic><topic>MATERIALS SCIENCE</topic><topic>Physics</topic><topic>pump−probe</topic><topic>ultrafast magnetism</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granitzka, Patrick W</creatorcontrib><creatorcontrib>Jal, Emmanuelle</creatorcontrib><creatorcontrib>Le Guyader, Loïc</creatorcontrib><creatorcontrib>Savoini, Matteo</creatorcontrib><creatorcontrib>Higley, Daniel J</creatorcontrib><creatorcontrib>Liu, Tianmin</creatorcontrib><creatorcontrib>Chen, Zhao</creatorcontrib><creatorcontrib>Chase, Tyler</creatorcontrib><creatorcontrib>Ohldag, Hendrik</creatorcontrib><creatorcontrib>Dakovski, Georgi L</creatorcontrib><creatorcontrib>Schlotter, William F</creatorcontrib><creatorcontrib>Carron, Sebastian</creatorcontrib><creatorcontrib>Hoffman, Matthias C</creatorcontrib><creatorcontrib>Gray, Alexander X</creatorcontrib><creatorcontrib>Shafer, Padraic</creatorcontrib><creatorcontrib>Arenholz, Elke</creatorcontrib><creatorcontrib>Hellwig, Olav</creatorcontrib><creatorcontrib>Mehta, Virat</creatorcontrib><creatorcontrib>Takahashi, Yukiko K</creatorcontrib><creatorcontrib>Wang, Jian</creatorcontrib><creatorcontrib>Fullerton, Eric E</creatorcontrib><creatorcontrib>Stöhr, Joachim</creatorcontrib><creatorcontrib>Reid, Alexander H</creatorcontrib><creatorcontrib>Dürr, Hermann A</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granitzka, Patrick W</au><au>Jal, Emmanuelle</au><au>Le Guyader, Loïc</au><au>Savoini, Matteo</au><au>Higley, Daniel J</au><au>Liu, Tianmin</au><au>Chen, Zhao</au><au>Chase, Tyler</au><au>Ohldag, Hendrik</au><au>Dakovski, Georgi L</au><au>Schlotter, William F</au><au>Carron, Sebastian</au><au>Hoffman, Matthias C</au><au>Gray, Alexander X</au><au>Shafer, Padraic</au><au>Arenholz, Elke</au><au>Hellwig, Olav</au><au>Mehta, Virat</au><au>Takahashi, Yukiko K</au><au>Wang, Jian</au><au>Fullerton, Eric E</au><au>Stöhr, Joachim</au><au>Reid, Alexander H</au><au>Dürr, Hermann A</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-04-12</date><risdate>2017</risdate><volume>17</volume><issue>4</issue><spage>2426</spage><epage>2432</epage><pages>2426-2432</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Light-matter interaction at the nanoscale in magnetic materials is a topic of intense research in view of potential applications in next-generation high-density magnetic recording. Laser-assisted switching provides a pathway for overcoming the material constraints of high-anisotropy and high-packing density media, though much about the dynamics of the switching process remains unexplored. We use ultrafast small-angle X-ray scattering at an X-ray free-electron laser to probe the magnetic switching dynamics of FePt nanoparticles embedded in a carbon matrix following excitation by an optical femtosecond laser pulse. We observe that the combination of laser excitation and applied static magnetic field, 1 order of magnitude smaller than the coercive field, can overcome the magnetic anisotropy barrier between “up” and “down” magnetization, enabling magnetization switching. This magnetic switching is found to be inhomogeneous throughout the material with some individual FePt nanoparticles neither switching nor demagnetizing. The origin of this behavior is identified as the near-field modification of the incident laser radiation around FePt nanoparticles. The fraction of not-switching nanoparticles is influenced by the heat flow between FePt and a heat-sink layer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28272897</pmid><doi>10.1021/acs.nanolett.7b00052</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5297-9124</orcidid><orcidid>https://orcid.org/0000-0003-0076-7079</orcidid><orcidid>https://orcid.org/0000000152979124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2017-04, Vol.17 (4), p.2426-2432 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1361059 |
source | ACS Publications |
subjects | Condensed Matter FePt magnetic switching MATERIALS SCIENCE Physics pump−probe ultrafast magnetism X-ray scattering |
title | Magnetic Switching in Granular FePt Layers Promoted by Near-Field Laser Enhancement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Switching%20in%20Granular%20FePt%20Layers%20Promoted%20by%20Near-Field%20Laser%20Enhancement&rft.jtitle=Nano%20letters&rft.au=Granitzka,%20Patrick%20W&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2017-04-12&rft.volume=17&rft.issue=4&rft.spage=2426&rft.epage=2432&rft.pages=2426-2432&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b00052&rft_dat=%3Cproquest_osti_%3E1878818883%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878818883&rft_id=info:pmid/28272897&rfr_iscdi=true |