Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte
Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2017-04, Vol.29 (8), p.3740-3753 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3753 |
---|---|
container_issue | 8 |
container_start_page | 3740 |
container_title | Chemistry of materials |
container_volume | 29 |
creator | Pearse, Alexander J Schmitt, Thomas E Fuller, Elliot J El-Gabaly, Farid Lin, Chuan-Fu Gerasopoulos, Konstantinos Kozen, Alexander C Talin, A. Alec Rubloff, Gary Gregorczyk, Keith E |
description | Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin ( |
doi_str_mv | 10.1021/acs.chemmater.7b00805 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1360797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f35885875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwE5As9pRzGjfJWEr5kCpAapmjs2MrrpK4st0hLPx1XLVCYmK64d7n0d1LyC2DCYOU3aP0E9morsOg3CQXAAXwMzJiPIWEA6TnZARFmSdZzmeX5Mr7LQCLaDEi32_YWy-xVXRtW1PTdYgW-oAhuozydNmjaFVNxUA3jXIdtnQebGckXeGgHH1UO-tNMLanVlOkKxMas-_oh22HXWP9rsEv1f-1L1slg4uBoK7JhcbWq5vTHJPPp-Vm8ZKs3p9fF_NVgtmUh4TXWmQCsFAAWudcKORsygSb6UwUNTIuZjJPy1pjWUKeCsEyIQWmWhYll-l0TO6OXuuDqbw0QclG2r6Pl1RsOoO8zGOIH0PSWe-d0tXOmQ7dUDGoDlVXserqt-rqVHXk2JE7rLd27_r4yj_MD2teiaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</title><source>ACS Publications</source><creator>Pearse, Alexander J ; Schmitt, Thomas E ; Fuller, Elliot J ; El-Gabaly, Farid ; Lin, Chuan-Fu ; Gerasopoulos, Konstantinos ; Kozen, Alexander C ; Talin, A. Alec ; Rubloff, Gary ; Gregorczyk, Keith E</creator><creatorcontrib>Pearse, Alexander J ; Schmitt, Thomas E ; Fuller, Elliot J ; El-Gabaly, Farid ; Lin, Chuan-Fu ; Gerasopoulos, Konstantinos ; Kozen, Alexander C ; Talin, A. Alec ; Rubloff, Gary ; Gregorczyk, Keith E ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><description>Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (<100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b00805</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atomic layer deposition ; ENERGY STORAGE ; flexible ; LiPON ; solid state battery ; solid state electrolyte ; thin film</subject><ispartof>Chemistry of materials, 2017-04, Vol.29 (8), p.3740-3753</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</citedby><cites>FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</cites><orcidid>0000-0002-1102-680X ; 0000-0001-7575-4294 ; 000000021102680X ; 0000000175754294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.7b00805$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.7b00805$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1360797$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pearse, Alexander J</creatorcontrib><creatorcontrib>Schmitt, Thomas E</creatorcontrib><creatorcontrib>Fuller, Elliot J</creatorcontrib><creatorcontrib>El-Gabaly, Farid</creatorcontrib><creatorcontrib>Lin, Chuan-Fu</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Kozen, Alexander C</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Rubloff, Gary</creatorcontrib><creatorcontrib>Gregorczyk, Keith E</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><title>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (<100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.</description><subject>Atomic layer deposition</subject><subject>ENERGY STORAGE</subject><subject>flexible</subject><subject>LiPON</subject><subject>solid state battery</subject><subject>solid state electrolyte</subject><subject>thin film</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwE5As9pRzGjfJWEr5kCpAapmjs2MrrpK4st0hLPx1XLVCYmK64d7n0d1LyC2DCYOU3aP0E9morsOg3CQXAAXwMzJiPIWEA6TnZARFmSdZzmeX5Mr7LQCLaDEi32_YWy-xVXRtW1PTdYgW-oAhuozydNmjaFVNxUA3jXIdtnQebGckXeGgHH1UO-tNMLanVlOkKxMas-_oh22HXWP9rsEv1f-1L1slg4uBoK7JhcbWq5vTHJPPp-Vm8ZKs3p9fF_NVgtmUh4TXWmQCsFAAWudcKORsygSb6UwUNTIuZjJPy1pjWUKeCsEyIQWmWhYll-l0TO6OXuuDqbw0QclG2r6Pl1RsOoO8zGOIH0PSWe-d0tXOmQ7dUDGoDlVXserqt-rqVHXk2JE7rLd27_r4yj_MD2teiaU</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Pearse, Alexander J</creator><creator>Schmitt, Thomas E</creator><creator>Fuller, Elliot J</creator><creator>El-Gabaly, Farid</creator><creator>Lin, Chuan-Fu</creator><creator>Gerasopoulos, Konstantinos</creator><creator>Kozen, Alexander C</creator><creator>Talin, A. Alec</creator><creator>Rubloff, Gary</creator><creator>Gregorczyk, Keith E</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0001-7575-4294</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid><orcidid>https://orcid.org/0000000175754294</orcidid></search><sort><creationdate>20170425</creationdate><title>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</title><author>Pearse, Alexander J ; Schmitt, Thomas E ; Fuller, Elliot J ; El-Gabaly, Farid ; Lin, Chuan-Fu ; Gerasopoulos, Konstantinos ; Kozen, Alexander C ; Talin, A. Alec ; Rubloff, Gary ; Gregorczyk, Keith E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic layer deposition</topic><topic>ENERGY STORAGE</topic><topic>flexible</topic><topic>LiPON</topic><topic>solid state battery</topic><topic>solid state electrolyte</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pearse, Alexander J</creatorcontrib><creatorcontrib>Schmitt, Thomas E</creatorcontrib><creatorcontrib>Fuller, Elliot J</creatorcontrib><creatorcontrib>El-Gabaly, Farid</creatorcontrib><creatorcontrib>Lin, Chuan-Fu</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Kozen, Alexander C</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Rubloff, Gary</creatorcontrib><creatorcontrib>Gregorczyk, Keith E</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pearse, Alexander J</au><au>Schmitt, Thomas E</au><au>Fuller, Elliot J</au><au>El-Gabaly, Farid</au><au>Lin, Chuan-Fu</au><au>Gerasopoulos, Konstantinos</au><au>Kozen, Alexander C</au><au>Talin, A. Alec</au><au>Rubloff, Gary</au><au>Gregorczyk, Keith E</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>29</volume><issue>8</issue><spage>3740</spage><epage>3753</epage><pages>3740-3753</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (<100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b00805</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0001-7575-4294</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid><orcidid>https://orcid.org/0000000175754294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2017-04, Vol.29 (8), p.3740-3753 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1360797 |
source | ACS Publications |
subjects | Atomic layer deposition ENERGY STORAGE flexible LiPON solid state battery solid state electrolyte thin film |
title | Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Solid%20State%20Batteries%20Enabled%20by%20Thermal%20Atomic%20Layer%20Deposition%20of%20a%20Lithium%20Polyphosphazene%20Solid%20State%20Electrolyte&rft.jtitle=Chemistry%20of%20materials&rft.au=Pearse,%20Alexander%20J&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2017-04-25&rft.volume=29&rft.issue=8&rft.spage=3740&rft.epage=3753&rft.pages=3740-3753&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b00805&rft_dat=%3Cacs_osti_%3Ef35885875%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |