Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-04, Vol.29 (8), p.3740-3753
Hauptverfasser: Pearse, Alexander J, Schmitt, Thomas E, Fuller, Elliot J, El-Gabaly, Farid, Lin, Chuan-Fu, Gerasopoulos, Konstantinos, Kozen, Alexander C, Talin, A. Alec, Rubloff, Gary, Gregorczyk, Keith E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3753
container_issue 8
container_start_page 3740
container_title Chemistry of materials
container_volume 29
creator Pearse, Alexander J
Schmitt, Thomas E
Fuller, Elliot J
El-Gabaly, Farid
Lin, Chuan-Fu
Gerasopoulos, Konstantinos
Kozen, Alexander C
Talin, A. Alec
Rubloff, Gary
Gregorczyk, Keith E
description Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (
doi_str_mv 10.1021/acs.chemmater.7b00805
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1360797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f35885875</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwE5As9pRzGjfJWEr5kCpAapmjs2MrrpK4st0hLPx1XLVCYmK64d7n0d1LyC2DCYOU3aP0E9morsOg3CQXAAXwMzJiPIWEA6TnZARFmSdZzmeX5Mr7LQCLaDEi32_YWy-xVXRtW1PTdYgW-oAhuozydNmjaFVNxUA3jXIdtnQebGckXeGgHH1UO-tNMLanVlOkKxMas-_oh22HXWP9rsEv1f-1L1slg4uBoK7JhcbWq5vTHJPPp-Vm8ZKs3p9fF_NVgtmUh4TXWmQCsFAAWudcKORsygSb6UwUNTIuZjJPy1pjWUKeCsEyIQWmWhYll-l0TO6OXuuDqbw0QclG2r6Pl1RsOoO8zGOIH0PSWe-d0tXOmQ7dUDGoDlVXserqt-rqVHXk2JE7rLd27_r4yj_MD2teiaU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</title><source>ACS Publications</source><creator>Pearse, Alexander J ; Schmitt, Thomas E ; Fuller, Elliot J ; El-Gabaly, Farid ; Lin, Chuan-Fu ; Gerasopoulos, Konstantinos ; Kozen, Alexander C ; Talin, A. Alec ; Rubloff, Gary ; Gregorczyk, Keith E</creator><creatorcontrib>Pearse, Alexander J ; Schmitt, Thomas E ; Fuller, Elliot J ; El-Gabaly, Farid ; Lin, Chuan-Fu ; Gerasopoulos, Konstantinos ; Kozen, Alexander C ; Talin, A. Alec ; Rubloff, Gary ; Gregorczyk, Keith E ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><description>Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (&lt;100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.7b00805</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atomic layer deposition ; ENERGY STORAGE ; flexible ; LiPON ; solid state battery ; solid state electrolyte ; thin film</subject><ispartof>Chemistry of materials, 2017-04, Vol.29 (8), p.3740-3753</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</citedby><cites>FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</cites><orcidid>0000-0002-1102-680X ; 0000-0001-7575-4294 ; 000000021102680X ; 0000000175754294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.7b00805$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.7b00805$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1360797$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pearse, Alexander J</creatorcontrib><creatorcontrib>Schmitt, Thomas E</creatorcontrib><creatorcontrib>Fuller, Elliot J</creatorcontrib><creatorcontrib>El-Gabaly, Farid</creatorcontrib><creatorcontrib>Lin, Chuan-Fu</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Kozen, Alexander C</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Rubloff, Gary</creatorcontrib><creatorcontrib>Gregorczyk, Keith E</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><title>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (&lt;100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.</description><subject>Atomic layer deposition</subject><subject>ENERGY STORAGE</subject><subject>flexible</subject><subject>LiPON</subject><subject>solid state battery</subject><subject>solid state electrolyte</subject><subject>thin film</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwE5As9pRzGjfJWEr5kCpAapmjs2MrrpK4st0hLPx1XLVCYmK64d7n0d1LyC2DCYOU3aP0E9morsOg3CQXAAXwMzJiPIWEA6TnZARFmSdZzmeX5Mr7LQCLaDEi32_YWy-xVXRtW1PTdYgW-oAhuozydNmjaFVNxUA3jXIdtnQebGckXeGgHH1UO-tNMLanVlOkKxMas-_oh22HXWP9rsEv1f-1L1slg4uBoK7JhcbWq5vTHJPPp-Vm8ZKs3p9fF_NVgtmUh4TXWmQCsFAAWudcKORsygSb6UwUNTIuZjJPy1pjWUKeCsEyIQWmWhYll-l0TO6OXuuDqbw0QclG2r6Pl1RsOoO8zGOIH0PSWe-d0tXOmQ7dUDGoDlVXserqt-rqVHXk2JE7rLd27_r4yj_MD2teiaU</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Pearse, Alexander J</creator><creator>Schmitt, Thomas E</creator><creator>Fuller, Elliot J</creator><creator>El-Gabaly, Farid</creator><creator>Lin, Chuan-Fu</creator><creator>Gerasopoulos, Konstantinos</creator><creator>Kozen, Alexander C</creator><creator>Talin, A. Alec</creator><creator>Rubloff, Gary</creator><creator>Gregorczyk, Keith E</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0001-7575-4294</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid><orcidid>https://orcid.org/0000000175754294</orcidid></search><sort><creationdate>20170425</creationdate><title>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</title><author>Pearse, Alexander J ; Schmitt, Thomas E ; Fuller, Elliot J ; El-Gabaly, Farid ; Lin, Chuan-Fu ; Gerasopoulos, Konstantinos ; Kozen, Alexander C ; Talin, A. Alec ; Rubloff, Gary ; Gregorczyk, Keith E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-5dfb4b0a8e00ff75bea5131b16f4b8da15b6c729dfa99072bb14bcba2fc895c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic layer deposition</topic><topic>ENERGY STORAGE</topic><topic>flexible</topic><topic>LiPON</topic><topic>solid state battery</topic><topic>solid state electrolyte</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pearse, Alexander J</creatorcontrib><creatorcontrib>Schmitt, Thomas E</creatorcontrib><creatorcontrib>Fuller, Elliot J</creatorcontrib><creatorcontrib>El-Gabaly, Farid</creatorcontrib><creatorcontrib>Lin, Chuan-Fu</creatorcontrib><creatorcontrib>Gerasopoulos, Konstantinos</creatorcontrib><creatorcontrib>Kozen, Alexander C</creatorcontrib><creatorcontrib>Talin, A. Alec</creatorcontrib><creatorcontrib>Rubloff, Gary</creatorcontrib><creatorcontrib>Gregorczyk, Keith E</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pearse, Alexander J</au><au>Schmitt, Thomas E</au><au>Fuller, Elliot J</au><au>El-Gabaly, Farid</au><au>Lin, Chuan-Fu</au><au>Gerasopoulos, Konstantinos</au><au>Kozen, Alexander C</au><au>Talin, A. Alec</au><au>Rubloff, Gary</au><au>Gregorczyk, Keith E</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Nanostructures for Electrical Energy Storage (NEES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>29</volume><issue>8</issue><spage>3740</spage><epage>3753</epage><pages>3740-3753</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10–7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (&lt;100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.7b00805</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1102-680X</orcidid><orcidid>https://orcid.org/0000-0001-7575-4294</orcidid><orcidid>https://orcid.org/000000021102680X</orcidid><orcidid>https://orcid.org/0000000175754294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-04, Vol.29 (8), p.3740-3753
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1360797
source ACS Publications
subjects Atomic layer deposition
ENERGY STORAGE
flexible
LiPON
solid state battery
solid state electrolyte
thin film
title Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Solid%20State%20Batteries%20Enabled%20by%20Thermal%20Atomic%20Layer%20Deposition%20of%20a%20Lithium%20Polyphosphazene%20Solid%20State%20Electrolyte&rft.jtitle=Chemistry%20of%20materials&rft.au=Pearse,%20Alexander%20J&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2017-04-25&rft.volume=29&rft.issue=8&rft.spage=3740&rft.epage=3753&rft.pages=3740-3753&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.7b00805&rft_dat=%3Cacs_osti_%3Ef35885875%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true