Dirac fermions in an antiferromagnetic semimetal

The prediction of an antiferromagnetic semimetal that breaks both time-reversal and inversion symmetry but respects their combination could provide a platform for studying the interplay between Dirac fermions and magnetism. Analogues of the elementary particles have been extensively searched for in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2016-12, Vol.12 (12), p.1100-1104
Hauptverfasser: Tang, Peizhe, Zhou, Quan, Xu, Gang, Zhang, Shou-Cheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1104
container_issue 12
container_start_page 1100
container_title Nature physics
container_volume 12
creator Tang, Peizhe
Zhou, Quan
Xu, Gang
Zhang, Shou-Cheng
description The prediction of an antiferromagnetic semimetal that breaks both time-reversal and inversion symmetry but respects their combination could provide a platform for studying the interplay between Dirac fermions and magnetism. Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications 1 , 2 , 3 . Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals 4 , 5 , 6 . All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry 7 , 8 , 9 . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.
doi_str_mv 10.1038/nphys3839
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1360178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4266375031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-205540ae8d2650db11262c4c6f26def1c4ece357d0d6a07f78e2680b029fa9a13</originalsourceid><addsrcrecordid>eNpl0EtLAzEQB_AgCtbHwW-w6EWF1bw2mz1KfULBi55Dmp1tU3aTmqSHfntTVoooDMww_BiYP0IXBN8RzOS9Wy-3kUnWHKAJqXlVUi7J4X6u2TE6iXGFMaeCsAnCjzZoU3QQButdLKwr9K6SzavgB71wkKwpIgx2gKT7M3TU6T7C-U8_RZ_PTx_T13L2_vI2fZiVhhOZSoqrimMNsqWiwu2cECqo4UZ0VLTQEcPBAKvqFrdC47qrJVAh8RzTptONJuwUXY53fUxWRWMTmKXxzoFJijCBSS0zuh7ROvivDcSkBhsN9L124DdRESl4VeOG7OjVH7rym-DyC1lx3uScJM3qZlQm-BgDdGod7KDDVhGsdgGrfcDZ3o42ZuMWEH5d_Ie_Ab9eexo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844924882</pqid></control><display><type>article</type><title>Dirac fermions in an antiferromagnetic semimetal</title><source>SpringerLINK Journals</source><source>Nature Journals Online</source><creator>Tang, Peizhe ; Zhou, Quan ; Xu, Gang ; Zhang, Shou-Cheng</creator><creatorcontrib>Tang, Peizhe ; Zhou, Quan ; Xu, Gang ; Zhang, Shou-Cheng ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>The prediction of an antiferromagnetic semimetal that breaks both time-reversal and inversion symmetry but respects their combination could provide a platform for studying the interplay between Dirac fermions and magnetism. Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications 1 , 2 , 3 . Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals 4 , 5 , 6 . All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry 7 , 8 , 9 . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3839</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/766/119/2792 ; 639/766/119/995 ; Antiferromagnetism ; Atomic ; Atoms &amp; subatomic particles ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Dispersions ; Electronic properties and materials ; Elementary particles ; Fermions ; letter ; Magnetism ; Mathematical analysis ; Mathematical and Computational Physics ; Metalloids ; Molecular ; Optical and Plasma Physics ; Physics ; Robustness ; Symmetry ; Theoretical ; Topological insulators</subject><ispartof>Nature physics, 2016-12, Vol.12 (12), p.1100-1104</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group Dec 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-205540ae8d2650db11262c4c6f26def1c4ece357d0d6a07f78e2680b029fa9a13</citedby><cites>FETCH-LOGICAL-c418t-205540ae8d2650db11262c4c6f26def1c4ece357d0d6a07f78e2680b029fa9a13</cites><orcidid>0000-0002-4376-3329 ; 0000-0002-6345-5809 ; 0000000243763329 ; 0000000263455809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3839$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3839$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1360178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Peizhe</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Zhang, Shou-Cheng</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Dirac fermions in an antiferromagnetic semimetal</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>The prediction of an antiferromagnetic semimetal that breaks both time-reversal and inversion symmetry but respects their combination could provide a platform for studying the interplay between Dirac fermions and magnetism. Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications 1 , 2 , 3 . Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals 4 , 5 , 6 . All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry 7 , 8 , 9 . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.</description><subject>119/118</subject><subject>639/766/119/2792</subject><subject>639/766/119/995</subject><subject>Antiferromagnetism</subject><subject>Atomic</subject><subject>Atoms &amp; subatomic particles</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Dispersions</subject><subject>Electronic properties and materials</subject><subject>Elementary particles</subject><subject>Fermions</subject><subject>letter</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Metalloids</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Robustness</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Topological insulators</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0EtLAzEQB_AgCtbHwW-w6EWF1bw2mz1KfULBi55Dmp1tU3aTmqSHfntTVoooDMww_BiYP0IXBN8RzOS9Wy-3kUnWHKAJqXlVUi7J4X6u2TE6iXGFMaeCsAnCjzZoU3QQButdLKwr9K6SzavgB71wkKwpIgx2gKT7M3TU6T7C-U8_RZ_PTx_T13L2_vI2fZiVhhOZSoqrimMNsqWiwu2cECqo4UZ0VLTQEcPBAKvqFrdC47qrJVAh8RzTptONJuwUXY53fUxWRWMTmKXxzoFJijCBSS0zuh7ROvivDcSkBhsN9L124DdRESl4VeOG7OjVH7rym-DyC1lx3uScJM3qZlQm-BgDdGod7KDDVhGsdgGrfcDZ3o42ZuMWEH5d_Ie_Ab9eexo</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Tang, Peizhe</creator><creator>Zhou, Quan</creator><creator>Xu, Gang</creator><creator>Zhang, Shou-Cheng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4376-3329</orcidid><orcidid>https://orcid.org/0000-0002-6345-5809</orcidid><orcidid>https://orcid.org/0000000243763329</orcidid><orcidid>https://orcid.org/0000000263455809</orcidid></search><sort><creationdate>20161201</creationdate><title>Dirac fermions in an antiferromagnetic semimetal</title><author>Tang, Peizhe ; Zhou, Quan ; Xu, Gang ; Zhang, Shou-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-205540ae8d2650db11262c4c6f26def1c4ece357d0d6a07f78e2680b029fa9a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>119/118</topic><topic>639/766/119/2792</topic><topic>639/766/119/995</topic><topic>Antiferromagnetism</topic><topic>Atomic</topic><topic>Atoms &amp; subatomic particles</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Dispersions</topic><topic>Electronic properties and materials</topic><topic>Elementary particles</topic><topic>Fermions</topic><topic>letter</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Metalloids</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Robustness</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Peizhe</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Zhang, Shou-Cheng</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Peizhe</au><au>Zhou, Quan</au><au>Xu, Gang</au><au>Zhang, Shou-Cheng</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirac fermions in an antiferromagnetic semimetal</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>12</volume><issue>12</issue><spage>1100</spage><epage>1104</epage><pages>1100-1104</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The prediction of an antiferromagnetic semimetal that breaks both time-reversal and inversion symmetry but respects their combination could provide a platform for studying the interplay between Dirac fermions and magnetism. Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications 1 , 2 , 3 . Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals 4 , 5 , 6 . All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry 7 , 8 , 9 . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3839</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4376-3329</orcidid><orcidid>https://orcid.org/0000-0002-6345-5809</orcidid><orcidid>https://orcid.org/0000000243763329</orcidid><orcidid>https://orcid.org/0000000263455809</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2016-12, Vol.12 (12), p.1100-1104
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1360178
source SpringerLINK Journals; Nature Journals Online
subjects 119/118
639/766/119/2792
639/766/119/995
Antiferromagnetism
Atomic
Atoms & subatomic particles
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Dispersions
Electronic properties and materials
Elementary particles
Fermions
letter
Magnetism
Mathematical analysis
Mathematical and Computational Physics
Metalloids
Molecular
Optical and Plasma Physics
Physics
Robustness
Symmetry
Theoretical
Topological insulators
title Dirac fermions in an antiferromagnetic semimetal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirac%20fermions%20in%20an%20antiferromagnetic%20semimetal&rft.jtitle=Nature%20physics&rft.au=Tang,%20Peizhe&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2016-12-01&rft.volume=12&rft.issue=12&rft.spage=1100&rft.epage=1104&rft.pages=1100-1104&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3839&rft_dat=%3Cproquest_osti_%3E4266375031%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844924882&rft_id=info:pmid/&rfr_iscdi=true